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Genetic basis of flavor complexity in  
sweet corn
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Qian Kong3, Yingni Xiao1, Nan Zhang1, Jingyun Luo2,4, Lu Chen2, Liying Feng    6, 
Wenguang Zhu1, Tianxiang Wen1, Lihua Xie1, Yuliang Li1, Wenjia Lu1, Chunyan Li1, 
Songtao Gui    2,4, Yingjie Xiao2,4, Ning Yang    2,4, Lin Zhuo2,4, 
Alisdair R. Fernie    7, Hai-Jun Liu    6  , Jianguang Hu    1   & Jianbing Yan    2,4 

Sweet corn is an important vegetable crop consumed globally. However, 
the genetic differentiation between field corn and sweet corn, and the 
impact of breeding on the metabolite composition and flavor (other than 
sweetness) of sweet corn, remain poorly understood. Here we assembled 
a cultivated sweet-corn genome de novo and re-sequenced 295 diverse 
sweet-corn inbred lines. We examined the genetic architecture of sweet-corn 
kernel quality by combining genetic, metabolite and expression profiling 
methodologies. New genes (for example, ZmAPS1, ZmSK1 and ZmCRR5) and 
metabolites associated with flavor and consumer preference were identified, 
highlighting important target flavor metabolites, including sugars, acids 
and volatiles. These findings provide valuable knowledge and targets for 
future genetic breeding of sweet-corn flavor, and to balance grain yield and 
quality and contribute to our broader understanding of crop diversification.

Sweet corn is a corn variety containing defective alleles of starch syn-
thesis genes, such as shrunken2 (sh2) and sugary1 (su1), and has become 
an important vegetable and fruit crop globally1. The sweet-corn indus-
try has achieved enormous economic value, for example, generating 
over US$774 million in the United States in 20211. Sweet corn probably 
originated from a spontaneous mutation in an ancient Peruvian corn, 
which was preserved by Native American tribes. The first historical 
reference to sweet corn was to an event at which the Iroquois gave the 
sweet-corn ‘Papoon’ to European settlers in 17792. Since then, sweet 
corn has undergone marked improvement via selective breeding and 
has been illuminated at the genomic level3–5.

Over the past decades, at least eight genes have been used in 
sweet-corn breeding programs, with the sh2 allele being the most 
successful, followed by the combination of su1 and sugary enhancer1 

(se1)3. The defective alleles in starch synthesis genes cause sweet corn 
to lose 50–70% of the starch in the endosperm, which is critical for 
germination and seedling development6,7. In addition to mutations 
affecting sweetness, some genes influencing other flavor qualities and 
economic traits, such as volatile emissions and pericarp thickness and 
texture, have been identified7. Simultaneous selection across breed-
ing programs has made sweet-corn breeding quite distinct from that 
of field corn8–10. However, the genetics underlying quality traits like 
flavor remain inadequately understood11.

Corn is widely recognized as an important model crop for study-
ing cereal evolution, metabolic pathways and quality improvement12–16. 
However, the germplasm pool for sweet corn remains largely unex-
plored. Extensive knowledge in genomics, transcriptomics and metab-
olomics of field corn would not only have laid the technical foundation 
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corn. These characteristics collectively suggest that sweet corn has 
undergone a unique breeding selection process.

Taking the distinctive differences in temperate and tropical 
germplasm into account, we conducted crosspopulation composite 
likelihood ratio (XP-CLR) and crosspopulation extended haplotype 
homozygosity (XP-EHH) analyses to identify regions potentially 
under positive selection in the sweet-corn population, comparing 
sweet corn to temperate (TEM) field corn (SC versus TEM) and sweet 
corn versus tropical and subtropical (TST) field corn (SC versus TST) 
(Fig. 1e–h). We identified 6,098 regions of selection in the top 5% of the 
XP-CLR values from the two analyses and 3,126 regions from 2 XP-EHH 
analyses (the adjacent 2 were merged; Supplementary Tables 6 and 7).  
These regions cover approximately 10.3% of the maize genome, with 
a mean length of ~30.3 kb. Strikingly, 75% (64 put of 85) of the large 
LD blocks unique to sweet corn overlapped with these selection 
signals, a significantly higher proportion than would be expected by 
chance (P < 0.01, Fisher’s exact test). A total of 6,975 genes in these 
regions were considered as candidate genes, 5.7% (400) of which 
were identified in both XP-CLR and XP-EHH analyses. The differences 
between sweet corn and field corn are evident not only in carbohy-
drate metabolism (for example, carbohydrate metabolic process) but 
also in nucleotide metabolism regulation (false discovery rate (FDR) 
<0.05; Supplementary Table 8).

The role of Sh2 and Su1 in shaping sweet corn
Our newly assembled genome includes the complete sequence 
of sh2-R, which shows 95% identity with the Ia453 sequence 
(another recently assembled genome)5 in the a1-sh2 region. All 
super-sweet-corn lines in our current study harbor the sh2-R allele. 
We next compared our RC genome with 38 published regular field 
maize and teosinte genomes (https://maizegdb.org/) and discov-
ered an intermediate inversion in the Sh2 region, shared among all 
super-sweet corns and present only in the genome of field corn Tx303 
(Extended Data Fig. 2a). The gene model of the sh2-RRC allele likely 
derives from the Sh2Tx303 allele, which in turn probably originated from 
the Sh2TIL11 allele, consistent with the above finding of the inversion 
(Extended Data Fig. 2a). The unique inversion appears to have become 
fixed relatively recently, as supported by the likely single origin for 
the sh2-RRC allele, the stronger LD block and reduced π value observed 
in this region (Extended Data Fig. 2b–f).

Another important gene for sweet corn is Su1, which encodes a 
starch debranching enzyme that is essential for normal starch gran-
ule production and has rarely been studied previously. The defec-
tive allele of Su1 results in decreased starch and increased sugar 
and water-soluble polysaccharides, producing a creamy palatabil-
ity7. Multiple defective su1 alleles (su1-ref, su1-sw, su1-nc and so on) 
were independently isolated by indigenous peoples4,24. Recent hap-
lotype analysis demonstrated two radically distinct SNP patterns 
between sweet-corn (su1) and field-corn (Su1) populations5. In our 
sweet-corn population, a higher π value was observed than in field 
corn at the su1 region, identifying five different alleles based on 
deep-sequencing data. The two dominant alleles, Su1-RC (Su1 allele 
from RC lines with four nonsynonymous substitutions) and Su1-KE 
(with a Lys-to-Glu substitution at position 707), were found among 
these (Extended Data Fig. 2g–k). These five alleles cluster into three 
groups based on the SNPs in the Su1 region (Extended Data Fig. 2l).

As expected, the knockout lines of Sh2 and Su1 displayed shrunken 
and well-marked phenotypes similar to those of sh2-R and su1 types, 
respectively (Extended Data Fig. 3a–c). Combined -omics analyses 
revealed common effects of sh2 and su1 knockouts on the transcrip-
tome and metabolome (Extended Data Fig. 3d–h). Specifically, they 
increased levels of several sugars (for example, sucrose and rhamnose) 
and decreased levels of certain amino acids (for example, aspara-
gine and ornithine). RNA sequencing (RNA-seq) analysis revealed 171 
differentially expressed genes (DEGs) common to both knockouts, 

but also have provided a reference for the dissection of sweet-corn 
improvement17–20. In the current work, we generated a large dataset, 
including a high-quality, de novo, sweet-corn genome assembly, and 
transcriptomic and metabolomic evaluations of kernel tissues at two 
distinct harvest times from a population of 295 diverse sweet-corn 
inbred lines. Furthermore, we have assessed the flavor quality of these 
lines at the fresh stage. Using a metabolite genome-wide association 
study (mGWAS), we proposed candidate genes for flavor-associated 
metabolites and validated five of them via clustered regularly inter-
spaced short palindromic repeats (CRISPR)–Cas9. This study provides 
major insights into sweet-corn genome features, kernel quality forma-
tion mechanisms and the balance of consumer quality and grain yield. 
In doing so, our study has provided valuable resources for sweet-corn 
biology, as well as presenting a model for repurposing major crops.

Results
Population genomics of sweet corn
The sh2-R allele is widely used in modern super-sweet-corn commercial 
breeding programs. Its structural variation was initially documented 
in a recent report profiting from the high-quality genome assembly 
of Ia453 (ref. 5). To have a better understanding of the origin and for-
mation of this structural variation and further sweet-corn genome 
architecture, we sequenced a white super-sweet-corn genome, 
named RC, which was widely used in Chinese sweet-corn breeding 
programs. The genome size of RC was assembled at 2,171.95 Mb with 
the N50 values of contig and scaffold as 51.84 Mb and 220.16 Mb, 
respectively (Supplementary Tables 1 and 2). A total of 2,113.72 Mb 
(97.32%) of the assembled genome sequence was anchored on to 10 
chromosomes. Using Benchmarking Universal Single-Copy Orthologs 
(BUSCO), we assessed genome completeness and found that 98.7% 
of conserved BUSCO genes aligned to the RC genome. Furthermore, 
quality metrics indicated a consensus quality value (QV) of 29.21 and 
a mean long terminal repeat (LTR) assembly index (LAI) score of 26.27 
(Supplementary Tables 3). Employing homology prediction from 
5 closely related species together with transcriptome data derived 
from 10 tissues, we have annotated a total of 43,023 gene mod-
els (Supplementary Tables 4). Furthermore, RC-specific genome 
sequences of 23.1–32.2 Mb were observed compared with B73 and 
other sweet-corn genomes (Extended Data Fig. 1a–h).

To further study the population genomics of sweet corn, we 
collected a total of 295 sweet-corn accessions from Asia, America 
and Africa (Supplementary Table 5). These included 213 super-sweet 
corn (sh2-R), 17 ordinary sweet corn (su1), 9 strengthened sweet corn 
(su1-se1) and 56 double-recessive sweet-waxy corn (wx1-sh2). These 
accessions represent the major races of sweet-corn germplasm and 
consumption types (Fig. 1a). We obtained 7.3 TB of whole-genome 
sequencing (WGS) data from this population, with an average depth 
of 11.8-fold (ranging from 10-fold to 12-fold) genome coverage 
and heterozygosity ranging from 3.65% to 5.93% (average 5.26%; 
Supplementary Table 5). By mapping the WGS to our RC genome, we 
generated a variant set with 9.9 million high-quality single nucleotide 
polymorphisms (SNPs), averaging 4.6 SNPs per kb.

For a comprehensive comparison, we reanalyzed our WGS data 
of 507 diverse field-corn inbreds from temperate, subtropical and 
tropical regions21–23, using the same pipeline. Clear group differences 
between the sweet-corn and field-corn populations were observed 
(Fig. 1b–d and Extended Data Fig. 1i). Although the genetic diversity 
was comparable among sweet, temperate and tropical populations, 
sweet corn showed greater population differentiation compared to 
that between temperate and tropical populations. In addition, sweet 
corn exhibited slower linkage disequilibrium (LD) decay than field 
maize, which may be derived from population history; for example, it 
could be caused by a stronger bottleneck (Fig. 1c). This is also reflected 
in the higher number of large LD blocks (>900 kb) in sweet corn (SC, 
245) compared to field corn (164), with 85 (34.7%) unique to sweet 
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which were enriched in response to abiotic stimuli and hormones 
(Supplementary Tables 9 and 10), together with differentially abun-
dant metabolites, reflecting the response of the plant to an obstruc-
tion of starch synthesis. Moreover, 205 DEGs directly affected by sh2 
or su1 were also discovered in the selection analyses (XP-CLR and/or 

XP-EHH), significantly more overrepresented than expected (permuta-
tion test, P < 0.05). These findings suggest that the two mutations have 
multifaceted influence beyond sweetness, providing a model to study 
how complex interplay between mutated genes impacts downstream 
regulatory networks and the overall biochemical landscape.
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Fig. 1 | Genetic diversity between sweet-corn and field-corn populations. 
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b, Principal component analysis (PCA) of sweet corn and field corn, revealing 
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Rewired transcriptome regulation in sweet corn
To clarify the transcriptome characteristics of sweet corn, we performed 
RNA-seq analysis on the immature kernels (at 15 d after pollination 
(DAP)) of 280 sweet-corn lines. We identified 20,073 genes as expressed 
and used them for subsequent analyses. In total, 13,080 significant 
expression quantitative trait loci (eQTLs) involving 10,712 genes were 
detected (Fig. 2a, Extended Data Fig. 4 and Supplementary Table 11). 
Comparing this eQTL dataset with a reanalysis of previous RNA-seq 
data from the aforementioned field-corn population22 under the same 
workflow, we found that the sweet-corn analysis unveiled nearly all of 
the previously reported eQTLs plus an additional 845 unique to sweet 

corn. Although analyzed in a smaller population size (280 in sweet corn 
versus 342 in field corn), sweet corn has more expressed genes (18,972 
in field corn) and stronger transcriptional regulatory effects (an average 
eQTL effect of 0.25 versus 0.22 in field corn) in immature kernel tissue.

It is interesting that our analysis of the sweet-corn population 
revealed a greater prevalence of trans-eQTLs, suggesting that gene 
expression in sweet corn is predominantly influenced by distantly 
located regulatory elements, including those residing >100 kb away 
or on different chromosomes (Fig. 2b). Why this happens can be 
explained by the observation, from the sh2 and su1 knockout lines, 
that most DEGs are upregulated and more eQTLs were identified and 
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together explained higher gene expression variation for these DEGs in 
the sweet-corn population (Fig. 2c). Specifically, cis-eQTLs exhibited 
larger effects (coefficient of determination, R2) than the trans-eQTLs 
(phenotypic variation explained, 0.27 versus 0.24 on average, P < 0.001; 
Supplementary Table 11), consistent with the study in field corn22.

The identified eQTLs showed a significant uneven distribution  
across the genome, with 41 hotspots in sweet corn compared to 12 in field 
corn (P < 0.05 by permutation test; Fig. 2a and Extended Data Fig. 4). The 
eQTLs of DEGs from sh2 and su1 knockout lines cover 35 of the 41 eQTL 
hotspots, predominantly trans-regulatory. These 35 eQTL hotspots are 
specific to the sweet-corn population and absent in field corn. Gene 
ontology (GO) analysis revealed that genes in these eQTL hotspots 
were significantly enriched in chloroplast components and oxidore-
duction metabolic processes (false discovery rate (FDR) <0.05). This 
suggests that sh2 and su1 mutations significantly influence the expres-
sion of many other genes across different chromosomes.

Genetic landscape of metabolite regulation in sweet corn
To investigate the biochemical basis of sweet-corn flavor, we performed 
metabolomic analyses of 20-DAP kernels using gas chromatography–
mass spectrometry (GC–MS) and liquid chromatography–MS (LC–MS) 
techniques. We identified 234 metabolites from GC–MS and 260 from 
LC–MS with known molecular structures (Supplementary Table 12).

A total of 101 metabolite (m)QTLs (P ≤ 3.95 × 10−8) were identified 
with high mapping resolution (Fig. 3a, Extended Data Fig. 5a,b and 
Supplementary Table 13). Most of the mQTLs had major effects, with 
68.3% showing R2 > 0.15. Such mQTLs were also involved in multiple 

levels of sweet-corn growth and development. Major GWAS signals for 
metabolites were involved in glycometabolism (including erythrose, 
rhamnose, maltose, raffinose and xylose) and amino acid metabolism 
pathways (including those for glutamate and phenylalanine).

In sweet corn, defective alleles of genes associated with starch 
synthesis result in excess sugar accumulation in kernels, which may in 
turn influence other metabolic pathways. The two key genes, sh2 and 
su1, crucial for sweet corn formation, were located in metabolite (m)
GWAS hotspots (Fig. 3a). In particular, 22 metabolites were significantly 
associated with SNPs near sh2 and/or su1, with 10 metabolites shared 
(Supplementary Table 13). Furthermore, conditional association analy-
sis revealed that the association of sh2 (lead SNP: S3_224136540) with 
these ten metabolites was dependent on their association with su1 
(lead SNP: S4_43073379; LD r2 = 0.89). This suggests limited genetic 
exchange between super-sweet and ordinary sweet corn and, previ-
ously unnoticed, that sh2 and su1 share similar biological effects on 
the metabolome, as illustrated by metabolic changes in sh2 and su1 
knockout lines (Supplementary Table 14).

Multifactorial determinants of flavor perception in sweet corn
Sweet-corn flavor is a complex trait consisting of taste, mouthfeel 
and aroma. To have a relatively objective evaluation of this com-
prehensive metric, we further quantified each accession for flavor 
attributes including sweetness (taste), brittleness and pericarp thick-
ness (mouthfeel) and volatiles (aroma) of the sweet-corn popula-
tion. We organized two experiments assessing these quantitative 
metrics in 2017 and 2019 (Methods and Supplementary Table 15). 
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A high correlation was observed between the two experiments 
(Extended Data Fig. 5c,d) with a broad-sense heritability (H2) of 0.67. 
Furthermore, in 2019, we invited 95 ordinary consumers to score the 
18 typical lines chosen by the expert flavor experiments (Methods). 
The correlation coefficient between the average consumer score and 
the best linear unbiased prediction (BLUP) values from 2017 and 2019 
was 0.81 (P < 4.6 × 10−5). These results confirm that our flavor evalu-
ation of the sweet-corn population is reliable and representative of 
the general public.

GWASs for flavor ratings and individual components (includ-
ing brittleness, sweetness, pericarp thickness and volatiles) identi-
fied sh2 and su1 as the two strongest association signals (Fig. 3b and 
Supplementary Table 16). The colocalization between these two 
signals and mQTLs from metabolite mapping provides strong evi-
dence for dissecting the genetic basis of sweet-corn flavor quality 
(Extended Data Fig. 5a,b). It is interesting that the Su1-RC allele, despite 
having lower expression and conferring lower sugar content (Extended 
Data Figs. 2j and 6a–d), was associated with higher flavor ratings than 
the Su1-B73 allele (Extended Data Fig. 6e,f). Perhaps surprisingly, the 
discrepancy in sweetness between the two allele types was impercep-
tible to flavor-rating evaluators, with thinner pericarp thickness being 
the greatest contributor to flavor-quality variation instead (Extended 
Data Figs. 2j,k and 6g,h). These statistical analyses suggest that this 
locus is not under positive selection, but may represent a potential 
candidate for future breeding. As expected, knockout lines of su1 and 
sh2 had higher pericarp thickness values (approximately 5%) com-
pared to wild-types (Extended Data Fig. 3i), confirming the associa-
tion between sweetness and pericarp thickness. This suggests that, in 
the sh2-type sweet-corn background, modulating Su1 expression can 
improve texture by reducing pericarp thickness without sacrificing 
perceived sweetness.

To model the complex architecture of flavor, we performed a 
multi-omics regression analysis (Fig. 3c, Supplementary Table 17 and 
Methods). First, we identified two representative SNPs within the 
confidence interval of flavor-score GWAS results across the genome 
(Fig. 3c). Correlation analyses revealed the expression of 4,711 genes 
and quantification of 139 metabolites to be significantly correlated 
with flavor ratings (FDR < 0.05; Supplementary Table 18). Positive 
correlations included sucrose, exo-norbornanol, heptanoic acid, 
sorbopyranose and quinolinecarboxaldehyde, whereas negative 
correlations included maltose, xylose, allantoin, glyoxime and glu-
tamine. Second, we conducted genome-wide (9.93 million SNPs), 
transcriptome-wide (of 20,073 genes) and metabolome-wide (494 
metabolites) analyses to predict flavor ratings. Genome-wide SNPs 
explained 42.0–73.7% of flavor-rating variance (using the GCTA25 
GREML module; Supplementary Table 17), whereas the top two GWAS 
SNPs alone explained 19.0% (adjusted R2; Fig. 3d). Transcriptome and 
metabolite variations explained 27.1% and 24.9% of flavor variation, 
respectively, and combined could explain up to 39.5% (Fig. 3d and 
Methods). The total -omics variations explained as much as 40.7% 
of total flavor-score variation, including the top 2 SNPs, 28 gene 
expression modules and 14 metabolite clusters. This highlights the 
multifaceted genetic and biochemical regulation of this critical trait. 
In addition, we identified 4,711 genes directly or indirectly relevant 
to sweet-corn flavor, with 26.0% (1,227 genes) located in selection 
regions between sweet corn and field corn, which is significantly 
higher than expected (permutation test, P < 1.0 × 10−5).

Balancing sweet-corn flavor and yield
Although understanding that the genetic architecture of complex 
flavor-related traits is crucial, cloning the key underlying genes 
allows for more efficient and precise targeted improvements. Many 
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metabolites (22) that are highly correlated with flavor traits are either 
only (except rhamnose) influenced by known genes (for example, sh2, 
su1; class 1 in Fig. 3e; Supplementary Table 18) or largely polygenic or 
highly affected by environmental factors with no significant loci identi-
fied in our association analysis (class 3 in Fig. 3e; Extended Data Fig. 5b). 
However, multi-omics data generated in this study provided numerous 
leads for further gene discovery (Extended Data Fig. 5b). We prioritized 
the investigation of metabolites identified with new loci, especially 
those with potential links to yield or other developmental traits, even 
if their flavor associations are moderate (class 2 in Fig. 3e).

The gene ZmAPS1 (acid phosphatase 1; Zm00001eb277460) 
was identified based on association analysis of adenosine and 
methyl-phosphate content (Fig. 4a). Adenosine was additionally 
found to be significantly correlated with flavor ratings (FDR < 0.05; 
Supplementary Table 18). We identified an insertion and/or dele-
tion (indel) (−/ACC) in the 3′-UTR of ZmAPS1 that was significantly 
associated with both adenosine and methyl-phosphate content 
(Extended Data Fig. 7a–c). To verify the function of the ZmAPS1, we 
created mutants in the first exon of this gene using CRISPR–Cas9 
(Extended Data Fig. 7a). Knockout lines of ZmAPS1 exhibited signifi-
cantly lower adenosine and methyl-phosphate content in the kernel 
(Fig. 4b–d), directly validating its function.

Metabolites are crucial for plant composition, growth and 
development. Consequently, variation in flavor-related metabolites 
may also impact the yield of sweet corn. Approximately 7.5% (37) of 
detected metabolites were significantly correlated with grain yield 
and half of these (18, including quinic acid, cellobiose, fumaric acid 
and sorbitol) were also significantly correlated with flavor scores 
(Supplementary Table 18). Quinic acid, derived from the shikimate 
pathway, is a common substrate in the biosynthesis of the three essen-
tial aromatic amino acids: tryptophan, phenylalanine and tyrosine. It 
has been revealed as an important organic acid in sweet corn, with an 
antioxidant activity, and as a precursor to aromatic amino acids26. Our 
analysis showed that quinic acid is slightly positively associated with 
pericarp thickness (r = 0.13, P = 3.6 × 10−2; Supplementary Table 18), 
negatively affecting flavor.

A major mQTL for quinic acid was identified on chromosome 
2, with ZmSK1 (Zm00001eb069000) the putative underlying gene 
(Fig. 5a,b), which encodes shikimate kinase 1 and catalyzes the conver-
sion of shikimate to shikimate 3-phosphate. An indel (TTATTGCC/−) 
near the lead SNP (S2_6412295) is significantly associated with both 
the quinic acid content and ZmSK1 expression (Fig. 5c,d). Quinic acid 
content negatively correlates with ZmSK1 expression (P = 1.04 × 10−2) 
and positively correlates with yield-related traits (for example, ear 
weight and hundred-kernel weight, P = 3.38 × 10−3 and 8.08 × 10−5, 
respectively; Fig. 5e and Extended Data Fig. 8a,b). However, higher 
hundred-kernel weight is linked to a thicker pericarp (P = 3.61 × 10−4; 
Extended Data Fig. 8c) that may diminish flavor perception, high-
lighting the trade-off between yield and quality. Supporting these, 
metabolite profiles of ZmSK1 knockout mutants displayed more 
increased quinic acid levels than wild-types (WTs), although the overall 
metabolome remained unchanged (Fig. 5f and Extended Data Fig. 8d). 
Furthermore, higher quinic acid content in ZmSK1 knockout lines was 
correlated with increased grain yield (Fig. 5g and Extended Data Fig. 8e). 
Co-expressed genes of ZmSK1 (both positively and negatively cor-
related, n = 142 or 59, FDR < 0.001; Supplementary Table 19) in imma-
ture kernel tissue were enriched in ribosome-related, xylan metabolic 
and cell-wall polysaccharide biosynthetic processes (GO, FDR < 0.05; 
Supplementary Table 20) and potentially enriched in carbon fixation 
in photosynthesis (Kyoto Encyclopedia of Genes and Genomes (KEGG), 
FDR < 0.05; Supplementary Table 21). This reflects that ZmSK1 medi-
ates the close interrelationship of quinic acid, pericarp thickness and 
grain yield.

Fructose, including fructofuranose and fructopyranose, is a major 
soluble monosaccharide in plants, with approximately 93% present 

as fructofuranose in sweet-corn kernels (Supplementary Table 12). 
It plays a critical role in signal transduction and plant growth, as seen 
in Arabidopsis root development27. Our study found that fructofura-
nose was moderately correlated with flavor ratings (such as volatiles) 
at 20 DAP (Supplementary Table 18). A GWAS identified a peak (SNP 
S3_153509969; P = 8.57 × 10−9) within ZmCRR5 (cytokinin response 
regulator 5; Zm00001d042066) (Fig. 6a,b), encoding a glycoside 
hydrolase, with a strong correlation (r = 0.30; P = 1.17 × 10−6) between 
its expression and fructofuranose content (Fig. 6c).

In ZmCRR5 knockout lines, fructofuranose and 5 other metabolites 
significantly decreased (Fig. 6d,e and Extended Data Fig. 9a), whereas 
37 metabolites (including monosaccharides, oligosaccharides, organic 
acids and amino acids) increased (Fig. 6e). Of these, 30 were also corre-
lated with flavor ratings: 14 enhanced sweet-corn flavor, whereas the rest 
were unfavorable, highlighting ZmCRR5’s key role in flavor formation 
(Fig. 6e and Supplementary Table 18). Surprisingly, ZmCRR5 knockout 
lines displayed no significant changes in above-ground plant architec-
ture (Fig. 6f,g), but affected root and yield traits. Root number decreased 
by approximately 31% at the mature stage (Extended Data Fig. 9b,c), and 
a strong correlation was observed between lateral roots and fructofura-
nose content at the seedling stage (P = 1.72 × 10−3; Extended Data Fig. 9d). 
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The kernel yield of ZmCRR5 knockout lines decreased by 16%, with 
cytokinin components decreased by 25.2–54.9% (on average, 42.5%) in 
immature kernels compared to WT (Fig. 6h,i, Extended Data Fig. 9e and 
Supplementary Table 22).

As ZmCRR5 knockout causes severe phenotypes, we explored natu-
ral allelic variations to improve flavor quality without adverse agro-
nomic traits. In the sweet corn, 3 ZmCRR5 haplotype groups (HG1–3) 
were observed in 269 lines within the sh2-R background (Fig. 6j and 
Extended Data Fig. 10a). HG2, with moderate ZmCRR5 expression, 
exhibited the lowest fructofuranose content, thinner pericarp and 
highest yield (Fig. 6k–m and Extended Data Fig. 10b,c), suggesting 
that fine-tuning ZmCRR5 can balance pericarp thickness and yield. It 
is interesting that further analysis revealed that two CRR homologs 
were upregulated in the shoot apical meristem, but not in immature 
kernels (ZmCRR1 and ZmCRR2; Extended Data Fig. 9f–h). This gene family 

thus provides valuable targets for the precise design of high-yield and 
high-quality sweet corn.

Knockout of the above three genes (ZmAPS1, ZmSK1 and ZmCRR5) 
successfully altered corresponding metabolite levels, thereby 
validating the approach to functional gene prioritization based on 
public information and multi-omics data generated in this study 
(Extended Data Fig. 5b). However, this was not always the case. For 
instance, two additional candidate genes (Zm00001eb211960 and 
Zm00001eb405310) proposed for erythrose and DL-2-amino-octanoic 
acid, selected based on the same principles, did not exhibit the antici-
pated phenotypic changes on knockout (Extended Data Fig. 7d–g).

Discussion
Our multi-omics dataset revealed a surprising genetic divergence 
between sweet corn and field corn, greater than that between tropical 
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and temperate maize28. This deep divergence is the result of a distinct 
evolutionary history4,29 and strong positive selection of genes crucial 
for carbohydrate metabolism, as well as light and hormone responses. 
Although sweet corn’s precise origins remain unresolved, our findings 
confirm that it has been on a separate trajectory, developing unique 
transcriptional networks to adapt to the high-sugar, low-starch envi-
ronment created by mutations like sh2 and su1.

A primary achievement of this study is the creation of a predictive 
framework for sweet-corn flavor. By integrating large-scale sensory 
evaluations with multi-omics data, we have moved beyond analyz-
ing single components to modeling a complex, consumer-relevant 
trait30–32. This framework identified numerous loci that make flavor 
breeding more predictable and uncovered key relationships, such as 
the inverse correlation between sweetness and pericarp thickness. Our 
analysis shows that improving mouthfeel by reducing pericarp thick-
ness can enhance overall flavor perception even without increasing 
sugar content, offering a new strategy for breeding.

This work also directly confronts the classic trade-off between 
flavor and yield. We demonstrated that these traits are often negatively 
correlated, exemplified by the gene ZmSK1, where alleles that increase 
yield also increase quinic acid and pericarp thickness, thereby dimin-
ishing flavor. However, our discovery of natural variation in genes like 
ZmAPS1 and ZmCRR5 shows that this trade-off is not absolute. Specific 
alleles of ZmCRR5, for instance, can balance high yield with desirable 
flavor attributes. These findings provide concrete genetic targets for 
uncoupling unfavorable linkages, enabling the creation of tailored 
alleles through gene editing to simultaneously improve both quality 
and agronomic performance.

Although our multi-omics workflow successfully identified 
and validated the function of three new genes (ZmAPS1, ZmSK1 and 
ZmCRR5), it is not infallible. The failure to confirm phenotypes for two 
other candidates highlights that a robust QTL-to-gene pipeline remains 
elusive. The complexity of metabolic networks and the influence of 
genetic background can mask the effects of single-gene knockouts, a 
necessary caution for future functional studies.

In summary, by integrating consumer preferences with deep 
genetic and metabolic data, our research provides more than just a 
valuable community resource. It delivers a strategic roadmap for the 
future of sweet-corn improvement, establishing a data-driven founda-
tion to precisely design elite varieties that possess both superior flavor 
and high yield.
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Methods
Sweet-corn germplasm planting and sampling
A total of 295 sweet-corn accessions were collected from various 
regions worldwide, including China (165), America (43), Thailand 
(22), Japan (4), Canada (1) and Argentina (1) and 59 accessions with 
no clear geographic record. All sweet corns were planted in one-row 
plots using a randomized block design at the field experiment station 
(113°224′E, 23°093′N) of Guangdong Academy of Agricultural Sci-
ences. Detailed information about these accessions, such as traditional 
names, pedigree source descriptions and germplasm types, is available 
in Supplementary Table 5.

Leaf samples from each line were harvested at seedling stage (50 d 
after sowing) for DNA extraction. All maize plants were self-pollinated 
and five immature seeds were collected at 15 d and 20 d after pollination 
from three ears in each block. These seeds were bulked for total RNA 
and metabolite extraction. All samples for DNA extraction, RNA isola-
tion and metabolite profiling were immediately stored at −80 °C after 
sampling for further analysis. In total, 295 leaf samples at the seedling 
stage were obtained and used for WGS and 280 immature kernel tissue 
samples were harvested and successfully processed for RNA-seq and 
metabolite profiling.

Genome assembly
The genome of RC was assembled using 247.21 Gb of clean data (reads 
with a length of <1,000 bp or bases with a quality score <7 were filtered 
out) obtained from the Nanopore GridION sequencing platform. The 
assembly pipeline integrated Necat33 (v0.01) and Pilon34 (v1.22). In brief, 
Necat was used for Nanopore read correction, initial contig assembly 
and contig correction. The assembly results were then corrected for 
indel and SNP errors using Pilon based on next-generation sequenc-
ing data. A total of 891 contigs was obtained, with the shortest contig 
exceeding 2,000 bp.

Leaf tissues from RC lines at the seedling stage were fixed with 
formaldehyde to maintain the three-dimensional (3D) structure of 
the DNA, then digested with restriction endonuclease. Biotin-labeled 
bases were introduced to DNA sequences using the DNA terminal repair 
mechanism. The DNA was then fragmented and 300-bp to 700-bp frag-
ments were recovered. High-quality Hi-C libraries were sequenced on 
the BGI DNBSEQ platform. In total, 877.40 million reads (263.2 Gb clean 
data; 121.3 × genome coverage) were obtained from the Hi-C library. Of 
these, 65.79% of the read pairs were uniquely mapped to the assembled 
genome and 47.96% were valid interaction pairs used for Hi-C assembly.

The software fastp35 (v0.23.2) was used to filter raw reads with the 
parameters ‘--average_qual 15 -l 150’. Juicer36 (v1.6) was used to align the 
clean pair-end reads to the assembled genome to obtain the uniquely 
mapped read pairs. Software 3D-DNA37 (v170123) was used to cluster, 
order and orient the genome contigs on to the pseudochromosomes. 
Finally, the RC assemblies were divided into 500-kb bins and the interac-
tion signals generated by the read pairs between each bin were visual-
ized in the heatmap.

Genome evaluation and annotation
The completeness of the genome was assessed using BUSCO38 (v3) with 
the dataset of embryophyta_odb10. Repetitive sequences, including tan-
dem repeats and transposable elements, were annotated with de novo 
predictions (RepeatModeler v4.1.0 and LTR_FINDER v1.06) and homolog 
searches (RepeatMasker v4 and RepeatProteinMask v4.0.7) based on 
the database of RepBase39–41 (v21.12). Using Meryl42 (v1.4.1), a k-mer data-
base was constructed with a k-mer size of 20. The consensus k-mer QV 
score was then computed using Merqury42 (v1.3) with its default param-
eters. LTRs were predicted using EDTA43 (v2.2) with its default param-
eters. The LAI was computed utilizing the LTR_retriever44,45 (v3.0.1) 
pipeline to assess the continuity of assembled repetitive sequences. 
Gene annotation utilized an evidence-based prediction pipeline. For 
homolog analysis, five model species (Setaria italica, Oryza sativa, 

Brachypodium distachyon, Sorghum bicolor and Arabidopsis thaliana) 
and three maize genomes (B73, Mo17 and SK) were selected18,46–52. A set 
of 3,000 well-constructed genes were randomly selected for Augustus 
as a training dataset for the de novo prediction. Finally, Maker53 (v2.31.8) 
was used for gene annotation, integrating RNA-seq data from ten tissues 
(germ, radicle, male spikelet, embryo, unpollinated silks, immature ear, 
leaf, stem, root and endosperm) of the RC inbred line.

Resequencing and variant calling
Genomic DNA from sweet-corn seedling leaf tissues was isolated and 
sequencing libraries were prepared following instructions for the 
Illumina platform. These libraries underwent pair-end sequencing 
on the Illumina Hiseq2500 platform. To investigate the population 
affinities of sweet corn, we analyzed them alongside a published data-
set of field corn, which contains 507 inbred lines with diverse genetic 
backgrounds21,22. These field corn inbred lines were collected globally, 
encompassing temperate, tropical and/or subtropical inbred lines and 
some landraces. Detailed information on these field corns has been 
described in a previous study21. The field corn were re-sequenced using 
an Illumina NovaSeq6000 platform23, with sequencing depth varying 
between 15.4× and 34.6× and an average genome coverage of 22.5×.

For sweet corn, heterozygosity was estimated with GenomeScope 
2.0 (ref. 54), which analyzes the k-mer count distribution from Jellyfish55 
(v1.1.11). Trimmomatic56 (v0.33) was employed to remove low-quality 
bases and reads. Retained read pairs were then mapped against our 
chromosome-scale RC genome using the Burrows–Wheeler Aligner57 
(v0.7.17) for each sample, respectively. SAMtools58 (v1.9) was used 
to filter reads with a mapping quality (MAPQ) <30. SNP calling was 
performed using GATK59 (v4.1.3), following the best-practice pipeline. 
Read depth and coverage were determined using BEDtools60 (v2.25.0).

Population stratification
An unsupervised ancestral component analysis for sweet corn and 
field corn was performed using ADMIXTURE61 (v1.3.0). A subset of 
SNP dataset (167,000 SNPs; filter criterion: minor allele frequency 
(MAF) >0.05, missing ratio <10% and pairwise LD r2 < 0.2 within 100 kb) 
were selected for admixture analyses. To determine the number of 
ancestral components (K) of the inbred lines, a tenfold crossvalidation 
approach was implemented for each K, K = 1 to K = 10. We chose K = 3 as 
the number of ancestries for these lines, because the crossvalidation 
error sharply converged at this value.

Statistical analyses of nucleotide diversity (π) and population 
divergence (Fst) were conducted using VCFtools62 (v0.1.16) with a 
1,000-bp sliding window and 100-bp steps. PCA was carried out using 
PLINK63 with the ‘-pca’ option. SNPs were filtered with an MAF of 0.05 
and a missing ratio of 10. High LD SNPs were also filtered using pairwise 
LD values calculated and processed using an R script. Haplotype net-
works were constructed using the R package pegas64.

LD decay
PopLDdecay65 (v3.40) software was used to calculate LD values based on 
the r2 values and the corresponding distance between given SNPs within 
600 kb. The parameters were set as following: ‘-MaxDist 600 -MAF 
0.05’. The distance of LD decay was obtained when r2 dropped to 0.2.

Genome-wide selective sweep scan
Two approaches were used to identify genomic regions with positive 
selection signals. We compared the SNP dataset of sweet corn (test pop-
ulation) with that of field corn (reference population). XP-CLR (v1.0) 
values for each window were calculated with the published script66. 
Parameters were: sliding window size 0.5 cM, grid size 20 kb, maximum 
number of SNPs within a window 200 and a correlation level cutoff of 
0.70. Regions with the top 5% highest XP-CLR values were identified as 
candidate selective sweeps, where adjacent intervals without gaps are 
merged to form continuous regions.
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XP-EHH was measured using the software selscan67 (v1.3.0). The 
genome was divided into consecutive, nonoverlapping 20-kb windows 
and XP-EHH values were standardized using the ‘norm --xpehh’ func-
tion in selscan. Regions assigned as candidates for significant selection 
featured a P < 0.05, with adjacent and nongapped intervals merged 
directly to form continuous regions.

GC–MS and LC–MS analysis
Kernels of sweet-corn accessions at 20 DAP were harvested in two 
biological replicates and stored at −80°C before metabolic analyses. 
The kernels, pre-cooled in liquid nitrogen, were ground using a Mixer 
mill (Retsch, cat. no. MM400) for 30 s at 30 Hz. Then 50 mg of each 
sample powder was extracted following the procedures described in 
previous studies68,69.

For primary metabolite profiling, dried treatments were derivat-
ized with N-methyl-N-(trimethylsilyl) trifluoroacetamide70 and analyzed 
using GC–MS (Agilent, cat. no. 7890A-5975C); 1 µl of the liquid mixture 
from each sample was injected into the GC–MS at 270 °C in split mode 
(50:1) with helium carrier gas (>99.999% purity) flow set to 1 ml min−1 and 
separated by a DB-35MS UI (30 m × 0.25 mm, 0.25-µm) capillary column.

For secondary metabolite profiling, another dried treatment was 
resuspended in 150 μl of ultra-performance LC-grade methanol:water 
(1:1, v:v). Samples were then subjected to MS analysis using an Orbitrap 
fusion (Thermo Fisher Scientific) equipped with a reversed-phase LC 
system (Dionex, Thermo Fisher Scientific) in heated electrospray ioni-
zation mode. First, 10 μl of each sample was eluted using a TSS T3 col-
umn (100 mm × 2.1 mm containing 1.8-μm diameter particles, Waters) 
with a 0.4 ml min−1 flow rate. Mobile phase A was water with 0.1% formic 
acid and mobile phase B was acetonitrile with 0.1% formic acid.

Metabolomic data were analyzed according to the protocol 
described in our previous study71. The Agilent MassHunter Quantita-
tive Analysis software (vB.07.01) was used for GC–MS data analyses. 
An NIST library and in-house database established using authentic 
standards were used together for metabolite identification.

LC–MS-based metabolomics were first analyzed using Xcalibur 
software (v4.2; Thermo Fisher Scientific). Compound Discovery (v3.1; 
Thermo Fisher Scientific) and Trace Finder (v3.3; Thermo Fisher Scien-
tific) were used for qualitative and quantitative analysis of the second-
ary metabolome. Secondary metabolite identification was supported 
by in-house databases and online databases, including mzCloud, Chem-
spider, Human Metabolome Database (HMDB), KEGG and BioCyc. Both 
GC–MS and LC–MS metabolites were reported following the latest 
reporting standards71.

Metabolite GWAS
We used a mixed linear model to evaluate the association between SNPs 
and metabolic traits with Tassel72 (v3.0), integrating both population 
structure and kinship matrix. The top five principal components (PCs) 
mentioned above were used as population structure and the kinship 
was estimated using the Tassel program.

Heterozygous genotypes in the SNP dataset were replaced with 
missing ones. The SNP dataset was filtered with a 10% cutoff for miss-
ing data and markers with MAF > 0.05 remained for GWASs. A uniform 
significance threshold (P = 0.05/n, where n = 1,267,142, the effective 
number of independent SNPs used in the GWASs) was used for all meta-
bolic traits73,74. The P-value threshold for significance in the present 
sweet-corn population was approximately P = 3.95 × 10−8.

The SNP with the lowest P value in each locus was treated as the lead 
SNP and genes within a 50-kb region (downstream and upstream) of 
the lead SNP were selected as candidate genes. The R software package 
‘coloc’ was used to perform the colocalization analyses for two GWAS 
results using the corresponding summary data75. The candidate genes 
for further validation were selected based on multiple rules (for exam-
ple, statistical analyses, gene expression, correlation to metabolites and 
flavor traits and prior biological knowledge) (Extended Data Fig. 5b).

RNA-seq and eQTL analysis
All samples for RNA-seq were collected from immature kernel tissues at 
15 DAP. Total RNA was extracted using a Quick RNA Isolation Kit accord-
ing to the manufacturer’s instructions. The quality of the extracted RNA 
was evaluated using BioRad Experion. Illumina stranded messenger 
RNA libraries with an insert size of 300–500 bp were constructed using 
a Truseq stranded mRNA sample preparation kit (Illumina). Paired-end 
150-bp sequencing was conducted on the Illumina Hiseq2500 platform, 
yielding an average of 31.27 million raw reads per sample. After remov-
ing sequencing adapters and low-quality reads with Trimmomatic, the 
trimmed reads were then mapped to the RC genome using Hisat2 (ref. 76) 
(v2.1.0). An average of 24.76 million reads per sample with high mapping 
quality (MAPQ > 30) were used for expression abundance evaluation. 
BAM files were sorted and organized using SAMtools. StringTie76 (v2.20) 
was used to assemble transcripts and estimate their expression abun-
dances. Ballgown76 package (v3.6.0) in R was used to extract fragments 
per kilobase per million read (FPKM) values for all genes in all samples.

To detect eQTLs through a mixed linear model, the expression 
value of each gene was normalized to a normal distribution using the 
normal quantile transformation function (qqnorm) in R to meet the 
assumptions of the GWAS mixed linear model statistical method. A total 
of 20,073 genes (with median expression of FPKM > 1) was obtained 
to conduct downstream analyses. Association analyses followed the 
same procedures and significance threshold criterion as described 
for mGWASs.

For the field-corn population, all raw sequencing data were 
obtained from our previous studies19,22. We reanalyzed the eQTLs using 
the same pipelines and parameters. In brief, 8,407,536 high-quality 
SNP loci were identified within the field-corn panel (n = 342), with 
1,412,504 independent SNPs obtained. A total of 18,972 genes (with 
median expression of FPKM > 1) were regarded as expressed genes and 
used for subsequent eGWASs. The P-value threshold for significance 
in the present field corn population was approximately P = 3.54 × 10−8 
(P = 0.05/n).

The eQTLs were classified into cis-eQTLs and trans-QTLs according 
to the distance between the lead SNP and the corresponding gene. For 
each eQTL, if the lead SNP was located within the gene or within 2 kb 
upstream of the gene, it was regarded as a cis-eQTL; otherwise, it was 
considered to be a trans-eQTL.

Flavor test
To observe the difference in sweet-corn quality among 295 accessions, 
we conducted tasting tests with both sweet-corn breeders and ordinary 
consumers. Briefly, fresh sweet-corn ears were harvested at the optimal 
eating period (20 DAP). To reduce the influence of human-induced 
factors, two independent experiments were organized.

In 2017 and 2019, 5 and 7 experts from a high-quality sweet-corn 
breeding program scored 232 and 228 cooked corn samples, respec-
tively. Participants rated four properties (sweetness, brittleness, peri-
carp thickness and volatiles) on a scale from 1 to 10 (10 being most 
favorable and 1 least favorable), with a medium performance line as 
a control. Given the inverse correlation between original pericarp 
thickness scores and actual physical thickness—with 10 representing 
the thinnest pericarp (most favorable) and 1 the thickest (least favora-
ble)—we applied a data transformation: subtracting each score from 
11. This transformation ensured that, in subsequent analyses, higher 
numerical values directly corresponded to thicker pericarps, which is 
more consistent with common sense.

In addition, in 2019, 89 samples from different individuals were 
scored twice to evaluate the reliability of the scores. To evaluate the 
representative nature of the expert data, 95 untrained testers (33 men, 
62 women) scored 18 typical lines from the sweet-corn population using 
the same procedure and criteria as the expert tests.

The tasting data from 2017 and 2019 were disposed as independent 
environments and merged using the BLUP method. These merged data 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02401-0

were then used for association and correlation analyses with metabolite 
traits and gene expression values.

Knockout of candidate genes using the CRISPR–Cas9 
technique
For each candidate gene (Sh2, Su1, ZmAPS1, ZmSK1 and ZmCRR5), 
two small guide RNAs (Supplementary Table 23) were designed 
using CRISPR-P77 (v2.0). Vectors carrying the small guide RNAs were 
imported into the Agrobacterium strain and then used to transform 
the immature embryos of the maize inbred line KN5585 through 
Agrobacterium-mediated transformation78. All edited seedlings, 
together with control plants, were planted in randomized block design 
plots at Sanya, Hainan province (109°51′E, 18°25′N) in 2020. Mutations 
were identified using Sanger sequencing. All kernel tissue samples were 
harvested at 20 DAP. The procedure for immature kernel transcriptome 
and metabolome profiling was the same as that used for the sweet-corn 
population. All the relevant materials generated here are available to 
be shared on request from the corresponding authors.

Statistics
Broad-sense heritability (H2) was estimated using the variance compo-
nent method as the ratio of genotypic to the total phenotypic variance. 
H2 = σ2g/(σ2g + σ2y/ny), where σ2g  and σ2y are the variance components for 
genotypes and years, respectively, and ny represents the number of 
years. Broad-sense heritability was estimated using the lme4 (ref. 79) 
package in R. SNP heritability (variation in flavor ratings explained by 
all SNPs across the genome) was estimated using GCTA25,80 (v1.94.1). 
Genotype data were converted to PLINK format using VCFtools62 to 
meet GCTA requirements. The statistical significance of the deviation 
of observed data distribution (for example, eQTL hotspot identifica-
tion) from uniform distribution were assessed using permutation tests 
implemented in R scripts. GO and KEGG analyses were performed using 
the clusterProfiler81 package in R.

A three-step regression approach was adopted to evaluate the fac-
tors (including mutants, gene expressions and metabolites) involved in 
sweet-corn flavor quality. Briefly, two mutants with significant associa-
tions to flavor scores (that is, sh2 and su1) were included in the regres-
sion analyses. For the 494 metabolites and 20,073 gene expressions, 
they were grouped into different modules using the ‘kmeans’ method82 
and 28 and 14 modules were determined using the ‘wss’ method in the R 
package of factoextra (http://www.sthda.com/english/rpkgs/factoex-
tra). Mean values of each normalized potential factor were additionally 
incorporated into the regression models. We next performed the least 
absolute shrinkage and selection operator83 regression analysis to 
evaluate the priorities of these factors. The proportion of variance was 
adjusted with collinear effects excluded in the multiple linear regres-
sion model used for the perception of sweet-corn flavor. First, a linear 
regression mode was used for collinearity screening with a variance 
inflation factor <4. Second, the least absolute shrinkage and selection 
operator was adopted for the evaluation of the relative weight and to 
assign priority to each factor simultaneously. Last, adjusted R2 values 
were estimated from linear regression models with factors introduced 
based on the priority obtained above. All these steps were implemented 
in R. The specific statistical tests used were indicated in the correspond-
ing figure legends or corresponding sections in Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets supporting the findings of this study have been depos-
ited into the CNGB Sequence Archive of the China National Gene-
Bank DataBase (https://db.cngb.org/) under the following accession 
nos.: de novo assembled genomes and raw data at CNP0004684, 

CNP0003283 and CNP0003295; raw WGS data for the 295 sweet-corn 
accessions at CNP0003213; RNA-seq data for the 280 sweet-corn acces-
sions at CNP0003294; and RNA-seq for knockout and wild-type lines 
at CNP0003291 and CNP0004707. Source data are provided with 
this paper.

Code availability
No customized code was generated for this study. All analyses were 
performed using publicly available software with parameters detailed 
in Methods.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Genetic differences of sweet and field corn. a, Length of 
specific sequences in the RC genome compared to B73. b, Distribution of specific 
sequences in the RC genome compared to B73. c, Length of specific sequences 
in the RC genome compared to Ia453. d, Distribution of specific sequences in the 
RC genome compared to Ia453. e, Length of specific sequences in the RC genome 

compared to IL14H. f, Distribution of specific sequences in the RC genome 
compared to IL14H. g, Length of specific sequences in the RC genome compared 
to p39. h, Distribution of specific sequences in the RC genome compared to p39. 
i, Population structure of sweet and field corn populations, inferred using the 
maximum-likelihood method with three and four ancestral components (K = 3, 4).
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Extended Data Fig. 2 | Genetic variation in sh2 and su1. a, Synteny map 
highlighting an inversion in sh2 in RC genome compared to the field corn 
genome TX303 and parviglumis genome TIL11. b, Haplotype network analysis 
of 264 SNPs in the sh2-RC region, based on the RC gene model that includes the 
identified inversion. (c) LD plot (r2 values) for sh2 and flanking regions ( < 500 kb) 
in sweet corn population, and in kernel corn from (d) TEM population and (e) 
TST population. Nucleotide diversity (π) around (f) sh2 and (g) su1 in both sweet 
and field corn populations. h, Haplotype network analysis of SNPs in the su1 
region. i, Structural analysis identifying 5 alleles in the Su1 gene within sweet corn 

population. j, Comparison of relative sugar content (sum of sucrose, maltose, 
glucose, and fructose) among different su1 alleles. k, Comparison of relative 
pericarp thickness in immature kernels across different alleles of su1. The values 
to the left of each bar represent the number of sweet corn lines analyzed in (j) 
and (k). Data points show individual measurements; bar heights represent mean 
values and error bars represent the mean values ± s.d. Differences between 
groups were assessed using a two-tailed unpaired t-test. l, Principal component 
analysis of 63 SNPs discovered in su1 region.
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Extended Data Fig. 3 | Knockout of Sh2 and Su1 by CRISPR-Cas9. Two sgRNAs 
designed for gene editing on Sh2 (a) and Su1(b), respectively, shown in red. 
Mutations and deletions are indicated. c, Phenotypes of maize ears from su1 
and sh2 CRISPR-knockout line. Scale bars, 1 cm. d, Metabolites identified with 
significant changes and differentially expressed genes (DEGs) in Sh2 and Su1 
mutants compared to wild types. e, DEGs between sh2 and WT in kernel tissues 
at 20 DAP. f, Metabolomic comparison of sh2 and WT in kernel tissues at 20 DAP; 
fold change calculated using mean values (WT, n = 12; Mutant, n = 12). g, DEGs 

between su1 and WT in kernel tissues at 20 DAP. h, Comparison of metabolome 
of su1 and WT in kernel tissues at 20 DAP (WT, n = 12; Mutant, n = 12). i, Pericarp 
thickness comparisons between Su1 and Sh2 CRISPR-knockout lines and wild 
type kernels. Box plots are defined by the median (centre line), the 5th and 95th 
percentiles (box limits), and the whiskers extend to the minimum and maximum 
values. Individual data points are overlaid. P values (i) were calculated by one-way 
ANOVA followed by Tukey’s multiple comparisons test.
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Extended Data Fig. 4 | Distribution of eGWAS signals in sweet and field 
corn populations. Scatter plots show the genomic positions of genes and 
corresponding eQTL signals in sweet (a) and field (b) corn populations  
(upper panels). Distribution of eGWAS signal counts per 500 kb window across 

the genome in sweet (a) and field (b) corn populations (lower panels).  
The horizontal dashed line indicates the threshold for signal hotspots 
(permutation test P < 0.05).
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Extended Data Fig. 5 | Mapping results for flavor ratings and metabolites. 
a, Distribution of mQTL and flavor rating-related QTL across the maize genome. 
The arrow shows loci where mQTL and flavor rating-related QTL are colocalized. 
b, Flowchart illustrating the rationale and statistical framework used in the 

present study. c, Correlation analysis of sweet corn flavor ratings between two 
biological replicates in 2019. d, Correlation analysis of sweet corn flavor ratings 
between experiments conducted in 2017 and 2019.
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Extended Data Fig. 6 | Functional analysis of su1 alleles. Significant 
differences between Su1-RC and Su1-B73 alleles across the sweet corn population 
in sucrose (a), maltose (b), glucose (c), and fructose (d), respectively. 
e, Significant differences in expression levels among four su1 alleles. 
f, Significant differences in flavor values among four alleles of su1. g, Correlation 

analysis between pericarp thickness from taste rating experiments and su1 
expression levels. h, Sweetness from taste rating experiments, showing no 
difference between Su1-B73 and Su1-RC types. Differences between groups were 
assessed using a two-tailed unpaired t-test.
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Extended Data Fig. 7 | Functional identification of candidate genes. a, Gene 
model of ZmAPS1. CRISPR-Cas9 generated mutants in ZmAPS1 are shown, with 
sgRNAs in red and deletions shown as dashes. Violin plots showing differences 
of adenosine (b) and methyl-phosphate (c) content between genotypes at the 

InDel 3 (-/AAC). Knockout of Zm0001eb405310 (d) and Zm0001eb214960 (e) by 
CRISPR-Cas9. Violin plots of relative erythrose (f) and DL-2aminooctanoic acid 
(g) content between wild-type and knockout lines. Group comparisons were 
performed using two-tailed unpaired t-tests.
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Extended Data Fig. 8 | Functional identification of ZmSK1. a, Correlation 
analysis between ZmSK1 expression and quinic acid content. b, Correlation 
analysis between quinic acid content and hundred-kernel weight. c, Correlation 
analysis between pericarp thickness and hundred-kernel weight. d, Knockout of 

ZmSK1 by CRISPR-Cas9. Mutants of ZmSK1 are shown. e, Violin plots of hundred-
kernel weight between wild type and ZmSK1 knockout lines in 2022. Differences 
between groups were assessed using a two-tailed unpaired t-test.
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Extended Data Fig. 9 | Functional identification of ZmCRR5. a, Knockout 
of ZmCRR5 by CRISPR-Cas9. Representative images of maize roots (b) and 
statistical comparison of root numbers (c) between wild type and KO-ZmCRR5 
lines. d, Correlation between root numbers at seedling stage and normalized 
fructofuranose content. e, Hormones levels in immature kernel of ZmCRR5 
knockouts and wild types. P-values were analyzed using two-tailed unpaired 
t-test (n = 12/12). f, Inferred phylogenetic analysis of six CRR genes across maize 

genome. g, Expression of six CRR genes in short apical meristem tissues of 
ZmCRR5 knockout and wild types. h, Expression of six CRR genes in immature 
kernel (20 DAP) of ZmCRR5 knockouts and wild types. Data points (g and h) show 
individual measurements; bar heights represent mean values and error bars 
represent the mean values ± s.d. Differences between groups were assessed using 
two-tailed unpaired t-test.
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Extended Data Fig. 10 | Haplotype analysis of ZmCRR5. a, Identification of 
haplotype-specific (minimum allele frequency < 15% in one haplotype and 
corresponding allele frequency > 85% in other two haplotype groups) SNPs 
in ZmCRR5, shown as vertical lines in gray (introns), red (coding regions), and 
black (untranslated regions). were presented with gray, red and black vertical 
lines located in introns, coding regions and untranslated regions, respectively 

(upper). Below, details of 16 SNPs in coding regions, with allele frequencies for 
each haplotype group. Haplotype-specific SNPs are highlighted in bold. Violin 
plots displaying hundred-kernel weight (b) and pericarp thickness (c) across the 
three haplotype groups. P-values were determined by one-way ANOVA followed 
by Tukey’s multiple comparisons test.
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structure was integrated as covariates in all GWAS analyses. 
For CRISPR validations, all the knock-outs and their corresponding controls were planted, cultivated and analyzed in the same environment 
and the same batch of sequencing.
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