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Sweet cornisanimportant vegetable crop consumed globally. However,

the genetic differentiation between field corn and sweet corn, and the
impact of breeding on the metabolite composition and flavor (other than
sweetness) of sweet corn, remain poorly understood. Here we assembled
acultivated sweet-corn genome de novo and re-sequenced 295 diverse
sweet-corninbred lines. We examined the genetic architecture of sweet-corn
kernel quality by combining genetic, metabolite and expression profiling
methodologies. New genes (for example, ZmAPS1, ZmSKI and ZmCRRS5) and
metabolites associated with flavor and consumer preference were identified,
highlighting important target flavor metabolites, including sugars, acids
and volatiles. These findings provide valuable knowledge and targets for
future genetic breeding of sweet-corn flavor, and to balance grain yield and
quality and contribute to our broader understanding of crop diversification.

Sweet cornisa corn variety containing defective alleles of starch syn-
thesis genes, such as shrunken2 (sh2) and sugary1 (sul), and has become
animportant vegetable and fruit crop globally'. The sweet-cornindus-
try has achieved enormous economic value, for example, generating
over US$774 million in the United States in 2021'. Sweet corn probably
originated from a spontaneous mutation in an ancient Peruvian corn,
which was preserved by Native American tribes. The first historical
reference to sweet cornwas to an event at which the Iroquois gave the
sweet-corn ‘Papoon’ to European settlers in 1779% Since then, sweet
corn has undergone marked improvement via selective breeding and
has beenilluminated at the genomic level* .

Over the past decades, at least eight genes have been used in
sweet-corn breeding programs, with the sh2 allele being the most
successful, followed by the combination of sul and sugary enhancerl

(sel)®. The defective alleles in starch synthesis genes cause sweet corn
to lose 50-70% of the starch in the endosperm, which is critical for
germination and seedling development®’. In addition to mutations
affecting sweetness, some genes influencing other flavor qualities and
economictraits, such as volatile emissions and pericarp thickness and
texture, have been identified’. Simultaneous selection across breed-
ing programs has made sweet-corn breeding quite distinct from that
of field corn®°. However, the genetics underlying quality traits like
flavor remain inadequately understood".

Corniswidely recognized as animportant model crop for study-
ing cereal evolution, metabolic pathways and quality improvement'> ¢,
However, the germplasm pool for sweet corn remains largely unex-
plored. Extensive knowledge ingenomics, transcriptomics and metab-
olomics of field corn would not only have laid the technical foundation
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but also have provided a reference for the dissection of sweet-corn
improvement” %, In the current work, we generated a large dataset,
including a high-quality, de novo, sweet-corn genome assembly, and
transcriptomic and metabolomic evaluations of kernel tissues at two
distinct harvest times from a population of 295 diverse sweet-corn
inbred lines. Furthermore, we have assessed the flavor quality of these
lines at the fresh stage. Using a metabolite genome-wide association
study (mGWAS), we proposed candidate genes for flavor-associated
metabolites and validated five of them via clustered regularly inter-
spaced short palindromicrepeats (CRISPR)-Cas9. This study provides
major insights into sweet-corn genome features, kernel quality forma-
tion mechanisms and the balance of consumer quality and grainyield.
Indoingso, our study has provided valuable resources for sweet-corn
biology, as well as presenting a model for repurposing major crops.

Results

Population genomics of sweet corn

Thesh2-Ralleleis widely used inmodern super-sweet-corn commercial
breeding programs. Its structural variation was initially documented
in arecent report profiting from the high-quality genome assembly
of 1a453 (ref. 5). To have a better understanding of the origin and for-
mation of this structural variation and further sweet-corn genome
architecture, we sequenced a white super-sweet-corn genome,
named RC, which was widely used in Chinese sweet-corn breeding
programs. The genome size of RC was assembled at 2,171.95 Mb with
the N50 values of contig and scaffold as 51.84 Mb and 220.16 Mb,
respectively (Supplementary Tables1and 2). A total of 2,113.72 Mb
(97.32%) of the assembled genome sequence was anchored on to 10
chromosomes. Using Benchmarking Universal Single-Copy Orthologs
(BUSCO), we assessed genome completeness and found that 98.7%
of conserved BUSCO genes aligned to the RC genome. Furthermore,
quality metrics indicated a consensus quality value (QV) of 29.21 and
ameanlongterminal repeat (LTR) assembly index (LAI) score 0f26.27
(Supplementary Tables 3). Employing homology prediction from
5closely related species together with transcriptome data derived
from 10 tissues, we have annotated a total of 43,023 gene mod-
els (Supplementary Tables 4). Furthermore, RC-specific genome
sequences of 23.1-32.2 Mb were observed compared with B73 and
other sweet-corn genomes (Extended Data Fig. 1a-h).

To further study the population genomics of sweet corn, we
collected a total of 295 sweet-corn accessions from Asia, America
and Africa (Supplementary Table 5). These included 213 super-sweet
corn(sh2-R),17 ordinary sweet corn (sul), 9 strengthened sweet corn
(sul-sel) and 56 double-recessive sweet-waxy corn (wxI-sh2). These
accessions represent the major races of sweet-corn germplasm and
consumption types (Fig. 1a). We obtained 7.3 TB of whole-genome
sequencing (WGS) data from this population, with an average depth
of 11.8-fold (ranging from 10-fold to 12-fold) genome coverage
and heterozygosity ranging from 3.65% to 5.93% (average 5.26%;
Supplementary Table 5). By mapping the WGS to our RC genome, we
generated avariant set with 9.9 million high-quality single nucleotide
polymorphisms (SNPs), averaging 4.6 SNPs per kb.

For a comprehensive comparison, we reanalyzed our WGS data
of 507 diverse field-corn inbreds from temperate, subtropical and
tropical regions” >, using the same pipeline. Clear group differences
between the sweet-corn and field-corn populations were observed
(Fig. 1b—-d and Extended Data Fig. 1i). Although the genetic diversity
was comparable among sweet, temperate and tropical populations,
sweet corn showed greater population differentiation compared to
that between temperate and tropical populations. In addition, sweet
corn exhibited slower linkage disequilibrium (LD) decay than field
maize, which may be derived from population history; for example, it
couldbe caused by astronger bottleneck (Fig.1c). Thisis also reflected
in the higher number of large LD blocks (>900 kb) in sweet corn (SC,
245) compared to field corn (164), with 85 (34.7%) unique to sweet

corn. These characteristics collectively suggest that sweet corn has
undergone a unique breeding selection process.

Taking the distinctive differences in temperate and tropical
germplasm into account, we conducted crosspopulation composite
likelihood ratio (XP-CLR) and crosspopulation extended haplotype
homozygosity (XP-EHH) analyses to identify regions potentially
under positive selection in the sweet-corn population, comparing
sweet corntotemperate (TEM) field corn (SC versus TEM) and sweet
cornversustropical and subtropical (TST) field corn (SC versus TST)
(Fig.1e-h). Weidentified 6,098 regions of selectionin the top 5% of the
XP-CLR values from the two analyses and 3,126 regions from 2 XP-EHH
analyses (the adjacent 2 were merged; Supplementary Tables 6 and 7).
These regions cover approximately 10.3% of the maize genome, with
amean length of ~30.3 kb. Strikingly, 75% (64 put of 85) of the large
LD blocks unique to sweet corn overlapped with these selection
signals, asignificantly higher proportion than would be expected by
chance (P < 0.01, Fisher’s exact test). A total of 6,975 genes in these
regions were considered as candidate genes, 5.7% (400) of which
wereidentified in both XP-CLR and XP-EHH analyses. The differences
between sweet corn and field corn are evident not only in carbohy-
drate metabolism (for example, carbohydrate metabolic process) but
alsoinnucleotide metabolismregulation (false discovery rate (FDR)
<0.05; Supplementary Table 8).

Therole of Sh2 and Sul in shaping sweet corn

Our newly assembled genome includes the complete sequence
of sh2-R, which shows 95% identity with the 1a453 sequence
(another recently assembled genome)® in the al-sh2 region. All
super-sweet-corn lines in our current study harbor the sh2-R allele.
We next compared our RC genome with 38 published regular field
maize and teosinte genomes (https://maizegdb.org/) and discov-
ered an intermediate inversion in the Sh2 region, shared among all
super-sweet corns and present only in the genome of field corn Tx303
(Extended Data Fig. 2a). The gene model of the sh2-Rg allele likely
derives from the Sh2;,;4; allele, whichin turn probably originated from
the Sh2;,,; allele, consistent with the above finding of the inversion
(Extended DataFig.2a). The unique inversion appears to have become
fixed relatively recently, as supported by the likely single origin for
the sh2-Ry. allele, the stronger LD block and reduced mvalue observed
in this region (Extended Data Fig. 2b-f).

Another important gene for sweet corn is Sul, which encodes a
starch debranching enzyme that is essential for normal starch gran-
ule production and has rarely been studied previously. The defec-
tive allele of Sul results in decreased starch and increased sugar
and water-soluble polysaccharides, producing a creamy palatabil-
ity”. Multiple defective sul alleles (sul-ref, sul-sw, sul-nc and so on)
were independently isolated by indigenous peoples*?*. Recent hap-
lotype analysis demonstrated two radically distinct SNP patterns
between sweet-corn (sul) and field-corn (Sul) populations®. In our
sweet-corn population, a higher m value was observed than in field
corn at the sul region, identifying five different alleles based on
deep-sequencing data. The two dominant alleles, Sul-RC (Sul allele
from RC lines with four nonsynonymous substitutions) and Sul-KE
(with a Lys-to-Glu substitution at position 707), were found among
these (Extended Data Fig. 2g-k). These five alleles cluster into three
groups based onthe SNPs in the Sul region (Extended Data Fig. 2I).

Asexpected, the knockout lines of Sh2and Sul displayed shrunken
and well-marked phenotypes similar to those of sh2-R and sul types,
respectively (Extended Data Fig. 3a-c). Combined -omics analyses
revealed common effects of sh2 and sul knockouts on the transcrip-
tome and metabolome (Extended Data Fig. 3d-h). Specifically, they
increased levels of several sugars (for example, sucrose and rhamnose)
and decreased levels of certain amino acids (for example, aspara-
gine and ornithine). RNA sequencing (RNA-seq) analysis revealed 171
differentially expressed genes (DEGs) common to both knockouts,
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Fig. 1| Genetic diversity between sweet-corn and field-corn populations.

a, Dry ears from a subset of the sweet-corn population showing rich diversity.

b, Principal component analysis (PCA) of sweet corn and field corn, revealing
three identifiable subpopulations: TEM (n = 247) field corn, TST (n = 221)

field cornand SC (n=295).RCis a sweet-corn line with a high-quality genome
assembled in the present study. Several maize lines with genome assembled are
indicated by labels. The mixed group (n = 39) has unclear tropical and temperate
assignments. ¢, Genome-wide averaged distance where LD decays to r*= 0.2

for sweet-corn and field-corn populations. d, Values in each circle representing
nucleotide diversity () for each group. The values on each line represent
pairwise population divergence (F,,) between groups. e f, Detection of selection
signatures (by XP-CLR) between the sweet-corn and the TEM population (e) and
between the sweet corn and the TST population (f). g, h, Detection of selection
signatures (measured by XP-EHH) between sweet corn and the TEM (g) and TST
(h) populations, respectively. Genes in bold are identified by both XP-CLR and XP-
EHH analyses and those in red represent the key genes highlighted in this study.

which were enriched in response to abiotic stimuli and hormones
(Supplementary Tables 9 and 10), together with differentially abun-
dant metabolites, reflecting the response of the plant to an obstruc-
tion of starch synthesis. Moreover, 205 DEGs directly affected by sh2
or sul were also discovered in the selection analyses (XP-CLR and/or

XP-EHH), significantly more overrepresented than expected (permuta-
tiontest, P < 0.05). These findings suggest that the two mutations have
multifaceted influence beyond sweetness, providing amodel to study
how complexinterplay between mutated genes impacts downstream
regulatory networks and the overall biochemical landscape.
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Fig.2| Whole-genome expression analyses. a, ( i ) Gene expressions negatively
correlated with flavor ratings; (ii ) gene expressions positively correlated with
flavor ratings; (iii) eGWAS distribution for the field-corn population; (iv) eGWAS
distribution for the sweet-corn population; (v, vi) genes with cis-eQTLs (iv) and
trans-eQTLs (vi) across the maize genome (an eQTL was classified as cis hereif
thelead SNP was located within 2 kb of the gene that it regulates; otherwise,

it was classified as trans); and (vii) genes with trans-eQTLs between
chromosomes. b, Summary of distances between eQTL lead SNPs and
corresponding genes in field-corn and sweet-corn populations. ¢, Comparison
of eQTL effects on DEGs in field-corn and sweet-corn populations. R?indicates
the phenotypic variation explained by the lead SNP of each eQTL. The differences
between groups were assessed using a two-tailed, unpaired Student’s ¢-test.

Rewired transcriptome regulation in sweet corn

Toclarify thetranscriptome characteristics of sweet corn, we performed
RNA-seq analysis on the immature kernels (at 15 d after pollination
(DAP)) of 280 sweet-corn lines. We identified 20,073 genes as expressed
and used them for subsequent analyses. In total, 13,080 significant
expression quantitative traitloci (eQTLs) involving 10,712 genes were
detected (Fig. 2a, Extended Data Fig. 4 and Supplementary Table 11).
Comparing this eQTL dataset with a reanalysis of previous RNA-seq
datafrom the aforementioned field-corn population”? under the same
workflow, we found that the sweet-corn analysis unveiled nearly all of
the previously reported eQTLs plus an additional 845 unique to sweet

corn. Although analyzed in asmaller populationsize (280in sweet corn
versus 342 infield corn), sweet corn has more expressed genes (18,972
infield corn) and stronger transcriptional regulatory effects (an average
eQTLeffectof 0.25versus 0.22infield corn) inimmature kernel tissue.

It is interesting that our analysis of the sweet-corn population
revealed a greater prevalence of trans-eQTLs, suggesting that gene
expression in sweet corn is predominantly influenced by distantly
located regulatory elements, including those residing >100 kb away
or on different chromosomes (Fig. 2b). Why this happens can be
explained by the observation, from the sh2 and sul knockout lines,
that most DEGs are upregulated and more eQTLs were identified and
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Fig. 3| Genetics basis of sweet-corn flavor. a, Association for structurally
annotated metabolites from GC-MS or LC-MS. Those metabolites showing
significant correlation with flavor-rating traits are named as flavor related.

b, GWAS for flavor rating. ¢, Regression analyses correlating flavor ratings

with genomic (SNP), transcriptomic and metabolomic factors. R*indicates
phenotypic variation, calculated using linear regression analysis. d, UpSet plot
showing flavor-rating variation (adjusted R?) by 44 identified factors from c.
MET, metabolome; EXP, transcriptome. e, Summary of genetic and metabolomic
factors affecting sweet-corn flavor and yield. The numbers linking genetic

factors to metabolites indicate the variation explained by lead SNPs of the
corresponding candidate genes. The numbers connecting metabolites to flavor
andyield are variations explained by linear regression, with line width indicating
significance as detailed in Supplementary Table 18. Class 1 includes metabolites
uniquely associated with Sh2 and/or Sul and class 3 comprises metabolites

with no significant peaks identified. Although class 2 consists of metabolites
correlated with flavor or yield that have new peaks, cyan highlights the three
genes and their corresponding metabolites chosen for in-depth study.

together explained higher gene expression variation for these DEGsin
the sweet-corn population (Fig. 2¢). Specifically, cis-eQTLs exhibited
larger effects (coefficient of determination, R?) than the trans-eQTLs
(phenotypicvariation explained, 0.27 versus 0.24 on average, P < 0.001;
Supplementary Table 11), consistent with the study in field corn?.

The identified eQTLs showed a significant uneven distribution
across thegenome, with41hotspotsinsweet corncomparedto12in field
corn (P<0.05by permutationtest; Fig.2a and Extended DataFig.4). The
eQTLs of DEGs from sh2 and sul knockout lines cover 35 of the 41eQTL
hotspots, predominantly trans-regulatory. These 35eQTL hotspots are
specific to the sweet-corn population and absent in field corn. Gene
ontology (GO) analysis revealed that genes in these eQTL hotspots
were significantly enriched in chloroplast components and oxidore-
duction metabolic processes (false discovery rate (FDR) <0.05). This
suggests that sh2 and sul mutations significantly influence the expres-
sion of many other genes across different chromosomes.

Genetic landscape of metabolite regulation in sweet corn
Toinvestigate the biochemical basis of sweet-corn flavor, we performed
metabolomic analyses of 20-DAP kernels using gas chromatography-
mass spectrometry (GC-MS) and liquid chromatography-MS (LC-MS)
techniques. We identified 234 metabolites from GC-MSand 260 from
LC-MS with known molecular structures (Supplementary Table 12).
Atotal of 101 metabolite (m)QTLs (P < 3.95 x 107®) were identified
with high mapping resolution (Fig. 3a, Extended Data Fig. 5a,b and
Supplementary Table 13). Most of the mQTLs had major effects, with
68.3% showing R?> 0.15. Such mQTLs were also involved in multiple

levels of sweet-corn growth and development. Major GWAS signals for
metabolites were involved in glycometabolism (including erythrose,
rhamnose, maltose, raffinose and xylose) and amino acid metabolism
pathways (including those for glutamate and phenylalanine).

In sweet corn, defective alleles of genes associated with starch
synthesis resultin excess sugar accumulationin kernels, whichmayin
turninfluence other metabolic pathways. The two key genes, sh2 and
sul, crucial for sweet corn formation, were located in metabolite (m)
GWAS hotspots (Fig.3a).In particular, 22 metabolites were significantly
associated with SNPs near sh2 and/or sul, with 10 metabolites shared
(Supplementary Table13). Furthermore, conditional association analy-
sis revealed that the association of sh2 (lead SNP: S3_224136540) with
these ten metabolites was dependent on their association with sul
(lead SNP: S4_43073379; LD r?=0.89). This suggests limited genetic
exchange between super-sweet and ordinary sweet corn and, previ-
ously unnoticed, that sh2 and sul share similar biological effects on
the metabolome, as illustrated by metabolic changes in sh2 and sul
knockout lines (Supplementary Table 14).

Multifactorial determinants of flavor perception in sweet corn

Sweet-corn flavor is a complex trait consisting of taste, mouthfeel
and aroma. To have a relatively objective evaluation of this com-
prehensive metric, we further quantified each accession for flavor
attributesincluding sweetness (taste), brittleness and pericarp thick-
ness (mouthfeel) and volatiles (aroma) of the sweet-corn popula-
tion. We organized two experiments assessing these quantitative
metrics in 2017 and 2019 (Methods and Supplementary Table 15).
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A high correlation was observed between the two experiments
(Extended DataFig. 5¢,d) with abroad-sense heritability (H?) of 0.67.
Furthermore, in 2019, we invited 95 ordinary consumers to score the
18 typical lines chosen by the expert flavor experiments (Methods).
The correlation coefficient between the average consumer score and
the best linear unbiased prediction (BLUP) values from 2017 and 2019
was 0.81 (P < 4.6 x107). These results confirm that our flavor evalu-
ation of the sweet-corn population is reliable and representative of
the general public.

GWAS:s for flavor ratings and individual components (includ-
ing brittleness, sweetness, pericarp thickness and volatiles) identi-
fied sh2 and sul as the two strongest association signals (Fig. 3b and
Supplementary Table 16). The colocalization between these two
signals and mQTLs from metabolite mapping provides strong evi-
dence for dissecting the genetic basis of sweet-corn flavor quality
(Extended DataFig. 5a,b). Itis interesting that the Sul-RCallele, despite
having lower expression and conferring lower sugar content (Extended
DataFigs. 2jand 6a-d), was associated with higher flavor ratings than
the Sul-B73 allele (Extended Data Fig. 6e,f). Perhaps surprisingly, the
discrepancy in sweetness between the two allele types wasimpercep-
tibleto flavor-rating evaluators, with thinner pericarp thickness being
the greatest contributor to flavor-quality variationinstead (Extended
Data Figs. 2j,k and 6g,h). These statistical analyses suggest that this
locus is not under positive selection, but may represent a potential
candidate for future breeding. As expected, knockout lines of sul and
sh2 had higher pericarp thickness values (approximately 5%) com-
pared to wild-types (Extended Data Fig. 3i), confirming the associa-
tion between sweetness and pericarp thickness. This suggests that, in
the sh2-type sweet-corn background, modulating Sul expression can
improve texture by reducing pericarp thickness without sacrificing
perceived sweetness.

To model the complex architecture of flavor, we performed a
multi-omics regression analysis (Fig. 3¢, Supplementary Table 17 and
Methods). First, we identified two representative SNPs within the
confidenceinterval of flavor-score GWAS results across the genome
(Fig.3c). Correlation analyses revealed the expression of 4,711 genes
and quantification of 139 metabolites to be significantly correlated
with flavor ratings (FDR < 0.05; Supplementary Table 18). Positive
correlations included sucrose, exo-norbornanol, heptanoic acid,
sorbopyranose and quinolinecarboxaldehyde, whereas negative
correlations included maltose, xylose, allantoin, glyoxime and glu-
tamine. Second, we conducted genome-wide (9.93 million SNPs),
transcriptome-wide (of 20,073 genes) and metabolome-wide (494
metabolites) analyses to predict flavor ratings. Genome-wide SNPs
explained 42.0-73.7% of flavor-rating variance (using the GCTA*
GREML module; Supplementary Table17), whereas the top two GWAS
SNPs alone explained 19.0% (adjusted R%; Fig. 3d). Transcriptome and
metabolite variations explained 27.1% and 24.9% of flavor variation,
respectively, and combined could explain up to 39.5% (Fig. 3d and
Methods). The total -omics variations explained as much as 40.7%
of total flavor-score variation, including the top 2 SNPs, 28 gene
expression modules and 14 metabolite clusters. This highlights the
multifaceted genetic and biochemical regulation of this critical trait.
In addition, we identified 4,711 genes directly or indirectly relevant
to sweet-corn flavor, with 26.0% (1,227 genes) located in selection
regions between sweet corn and field corn, which is significantly
higher than expected (permutation test, P<1.0 x107).

Balancing sweet-corn flavor and yield

Although understanding that the genetic architecture of complex
flavor-related traits is crucial, cloning the key underlying genes
allows for more efficient and precise targeted improvements. Many
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metabolites (22) that are highly correlated with flavor traits are either
only (exceptrhamnose) influenced by known genes (for example, sh2,
sul; class1in Fig. 3e; Supplementary Table 18) or largely polygenic or
highly affected by environmental factors with no significant lociidenti-
fiedin ourassociation analysis (class 3 in Fig. 3e; Extended Data Fig. 5b).
However, multi-omics datagenerated in this study provided numerous
leads for further gene discovery (Extended Data Fig. 5b). We prioritized
the investigation of metabolites identified with new loci, especially
those with potential links to yield or other developmental traits, even
if their flavor associations are moderate (class 2 in Fig. 3e).

The gene ZmAPSI (acid phosphatase 1, Zm00001eb277460)
was identified based on association analysis of adenosine and
methyl-phosphate content (Fig. 4a). Adenosine was additionally
found to be significantly correlated with flavor ratings (FDR < 0.05;
Supplementary Table 18). We identified an insertion and/or dele-
tion (indel) (-/ACC) in the 3’-UTR of ZmAPSI that was significantly
associated with both adenosine and methyl-phosphate content
(Extended Data Fig. 7a-c). To verify the function of the ZmAPS1, we
created mutants in the first exon of this gene using CRISPR-Cas9
(Extended Data Fig. 7a). Knockout lines of ZmAPS]1 exhibited signifi-
cantly lower adenosine and methyl-phosphate content in the kernel
(Fig. 4b-d), directly validating its function.

Metabolites are crucial for plant composition, growth and
development. Consequently, variation in flavor-related metabolites
may also impact the yield of sweet corn. Approximately 7.5% (37) of
detected metabolites were significantly correlated with grain yield
and half of these (18, including quinic acid, cellobiose, fumaric acid
and sorbitol) were also significantly correlated with flavor scores
(Supplementary Table 18). Quinic acid, derived from the shikimate
pathway, isacommon substrate in the biosynthesis of the three essen-
tial aromatic amino acids: tryptophan, phenylalanine and tyrosine. It
has beenrevealed as animportant organic acid in sweet corn, withan
antioxidantactivity, and as a precursor to aromatic amino acids®. Our
analysis showed that quinic acid is slightly positively associated with
pericarp thickness (r=0.13, P=3.6 x10"% Supplementary Table 18),
negatively affecting flavor.

A major mQTL for quinic acid was identified on chromosome
2, with ZmSK1 (Zm00001eb069000) the putative underlying gene
(Fig.5a,b), which encodes shikimate kinase 1and catalyzes the conver-
sion of shikimate to shikimate 3-phosphate. An indel (TTATTGCC/-)
near the lead SNP (S2_6412295) is significantly associated with both
the quinic acid content and ZmSK1 expression (Fig. 5¢,d). Quinic acid
content negatively correlates with ZmSK1 expression (P=1.04 x107?)
and positively correlates with yield-related traits (for example, ear
weight and hundred-kernel weight, P=3.38 x 107 and 8.08 x 105,
respectively; Fig. 5e and Extended Data Fig. 8a,b). However, higher
hundred-kernel weight is linked to a thicker pericarp (P=3.61x107%
Extended Data Fig. 8c) that may diminish flavor perception, high-
lighting the trade-off between yield and quality. Supporting these,
metabolite profiles of ZmSK1 knockout mutants displayed more
increased quinicacid levels than wild-types (WTs), although the overall
metabolome remained unchanged (Fig. 5fand Extended Data Fig. 8d).
Furthermore, higher quinic acid contentin ZmSK1knockout lines was
correlated withincreased grainyield (Fig. 5g and Extended DataFig. 8e).
Co-expressed genes of ZmSK1I (both positively and negatively cor-
related, n=142 or 59, FDR < 0.001; Supplementary Table 19) in imma-
turekernel tissue were enriched in ribosome-related, xylan metabolic
and cell-wall polysaccharide biosynthetic processes (GO, FDR < 0.05;
Supplementary Table 20) and potentially enriched in carbon fixation
in photosynthesis (Kyoto Encyclopedia of Genes and Genomes (KEGG),
FDR < 0.05; Supplementary Table 21). This reflects that ZmSK1 medi-
ates the close interrelationship of quinic acid, pericarp thickness and
grainyield.

Fructose, including fructofuranose and fructopyranose, is amajor
soluble monosaccharide in plants, with approximately 93% present
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of ZmSK1 expression values (c) and quinic acid content (d), plotted against
genotypes atindel 8 (TTATTGCC/-). e, Correlation analysis between quinic acid
content and ear weight. Pearson’s correlation coefficient (r) and its associated
Pvalue were calculated using a two-tailed test. f, Metabolomic comparison
between ZmSK1 mutant and WT plants (n = 9 and 12 for KO and WT, respectively).
g, Violin plots comparing ear kernel weight between WT and ZmSK1 KO lines
across two growing seasons. Group comparisons were performed using two-
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as fructofuranose in sweet-corn kernels (Supplementary Table 12).
It plays a critical role in signal transduction and plant growth, as seen
in Arabidopsis root development”. Our study found that fructofura-
nose was moderately correlated with flavor ratings (such as volatiles)
at 20 DAP (Supplementary Table 18). A GWAS identified a peak (SNP
S3.153509969; P = 8.57 x 10°°) within ZmCRRS (cytokinin response
regulator 5; Zm00001d042066) (Fig. 6a,b), encoding a glycoside
hydrolase, with a strong correlation (r= 0.30; P=1.17 x 10™°) between
its expression and fructofuranose content (Fig. 6¢).
InZmCRRSknockout lines, fructofuranose and 5 other metabolites
significantly decreased (Fig. 6d,e and Extended Data Fig. 9a), whereas
37 metabolites (including monosaccharides, oligosaccharides, organic
acidsand aminoacids) increased (Fig. 6e). Of these, 30 were also corre-
lated with flavor ratings: 14 enhanced sweet-corn flavor, whereas the rest
were unfavorable, highlighting ZmCRRS’s key role in flavor formation
(Fig. 6e and Supplementary Table 18). Surprisingly, ZmCRR5 knockout
lines displayed no significant changes in above-ground plant architec-
ture (Fig. 6f,g), but affected root and yield traits. Root number decreased
by approximately 31% at the mature stage (Extended DataFig.9b,c), and
astrong correlation was observed between lateral roots and fructofura-
nose contentat the seedling stage (P=1.72 x 1073; Extended DataFig. 9d).

Nature Genetics | Volume 57 | November 2025 | 2842-2851

2848


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-025-02401-0

a
9 - Fructofuranose Zm:JRR5
g
o
=)
i)
1
5
b c
[0}
172
2.
6
50
3
e
f h
y: “?‘._;
L
Py
c x
3} X €
E ¥ 12
O - A
WT  KO-ZmCRR5 WT KO-ZmCRR5
g9 . P=0.64 i
200 80
— i c
£ 150 2 60
o ©
E [0}
>
2 100 S 40 4
< ©
= o
Kol ey
8 504 2 20 1
=
n=26 22
o - 0o T T
WT KO-ZmCRR5 WT KO-ZmCRR5

Fig. 6 | Functional validation of ZmCRRS. a, Manhattan plot of GWAS results

on fructofuranose content. b, Gene model of ZmCRRS5 (Zm00001d042066),
withexons and UTRs represented by filled orange and gray boxes, respectively.
Pairwise LD r* values among polymorphic sites near ZmCRRS are shown.

¢, Correlation between fructofuranose content and ZmCRRS expression.

d, Comparison of fructofuranose content between zmcrr5and WT plants.

For mutantsin the first and/or second exons, the sample size (n) is indicated.

e, Metabolomic comparison between zmcrr5and WT plants (n =18 and 12 for KO
and WT, respectively). f, Representative images of WT and KO ZmCRRS5 maize

-}

* *
P=51x10" v M

0.6 o Fructofgranose Methyl cinnamate

Raffinose

log,o(P)

Relative fructofuranose content

5.0
log,(FC)

=
IS

P=452x10"
P=162x10"

Expression values
o
|

n=104
T T T T T
-8 -4 0 4 HG1
PC1(53.6%)
L m
— 61 . 80 1 P=0.22
€ P=9.69x10 =)
8 = P=1.99 x10
€ P=4.89x10 —
o ®
o 60
3 —
o 2
c -
S Ny
2 2 40
2 3
o —
3 (]
q: wl
) 20
2
=
]
Q
o n=107 35 123
0] T T T
HG1 HG2 HGS3 HG1 HG2 HG3

plants. g, Comparison of plant heights between WT and KO ZmCRRS lines.
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comparison test.

The kernel yield of ZmCRRS knockout lines decreased by 16%, with
cytokinincomponents decreased by 25.2-54.9% (on average, 42.5%) in
immature kernels compared to WT (Fig. 6h,i, Extended DataFig. 9e and
Supplementary Table 22).

AsZmCRRS5knockout causes severe phenotypes, we explored natu-
ral allelic variations to improve flavor quality without adverse agro-
nomic traits. In the sweet corn, 3 ZmCRR5 haplotype groups (HG1-3)
were observed in 269 lines within the sh2-R background (Fig. 6j and
Extended Data Fig. 10a). HG2, with moderate ZmCRRS expression,
exhibited the lowest fructofuranose content, thinner pericarp and
highest yield (Fig. 6k-m and Extended Data Fig. 10b,c), suggesting
that fine-tuning ZmCRRS5 can balance pericarp thickness and yield. It
is interesting that further analysis revealed that two CRR homologs
were upregulated in the shoot apical meristem, but not in immature
kernels (ZmCRR1and ZmCRR2; Extended Data Fig. 9f-h). This gene family

thus provides valuable targets for the precise design of high-yield and
high-quality sweet corn.

Knockout of the above three genes (ZmAPS1, ZmSKI and ZmCRRS)
successfully altered corresponding metabolite levels, thereby
validating the approach to functional gene prioritization based on
public information and multi-omics data generated in this study
(Extended Data Fig. 5b). However, this was not always the case. For
instance, two additional candidate genes (Zm00001eb211960 and
Zm00001eb405310) proposed for erythrose and DL-2-amino-octanoic
acid, selected based onthe same principles, did not exhibit the antici-
pated phenotypic changes on knockout (Extended Data Fig. 7d-g).

Discussion
Our multi-omics dataset revealed a surprising genetic divergence
betweensweet cornand field corn, greater than that betweentropical
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and temperate maize”®, This deep divergence is the result of a distinct
evolutionary history**’ and strong positive selection of genes crucial
for carbohydrate metabolism, as well as light and hormone responses.
Although sweet corn’s precise origins remain unresolved, our findings
confirm that it has been on a separate trajectory, developing unique
transcriptional networks to adapt to the high-sugar, low-starch envi-
ronment created by mutations like sh2 and sul.

Aprimary achievement of this study is the creation of a predictive
framework for sweet-corn flavor. By integrating large-scale sensory
evaluations with multi-omics data, we have moved beyond analyz-
ing single components to modeling a complex, consumer-relevant
trait®* 2, This framework identified numerous loci that make flavor
breeding more predictable and uncovered key relationships, such as
theinverse correlationbetween sweetness and pericarp thickness. Our
analysis shows thatimproving mouthfeel by reducing pericarp thick-
ness can enhance overall flavor perception even without increasing
sugar content, offering a new strategy for breeding.

This work also directly confronts the classic trade-off between
flavor andyield. We demonstrated that these traits are often negatively
correlated, exemplified by the gene ZmSK1, where alleles thatincrease
yield also increase quinic acid and pericarp thickness, thereby dimin-
ishing flavor. However, our discovery of natural variationin genes like
ZmAPSIand ZmCRR5 shows that this trade-offis not absolute. Specific
alleles of ZmCRRS, for instance, can balance high yield with desirable
flavor attributes. These findings provide concrete genetic targets for
uncoupling unfavorable linkages, enabling the creation of tailored
alleles through gene editing to simultaneously improve both quality
and agronomic performance.

Although our multi-omics workflow successfully identified
and validated the function of three new genes (ZmAPS1, ZmSK1 and
ZmCRRS), itis notinfallible. The failure to confirm phenotypes for two
other candidates highlights that arobust QTL-to-gene pipeline remains
elusive. The complexity of metabolic networks and the influence of
genetic background can mask the effects of single-gene knockouts, a
necessary caution for future functional studies.

In summary, by integrating consumer preferences with deep
genetic and metabolic data, our research provides more than just a
valuable community resource. It delivers a strategic roadmap for the
future of sweet-cornimprovement, establishing a data-driven founda-
tionto precisely design elite varieties that possess both superior flavor
and highyield.

Online content
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Methods

Sweet-corn germplasm planting and sampling

A total of 295 sweet-corn accessions were collected from various
regions worldwide, including China (165), America (43), Thailand
(22),Japan (4), Canada (1) and Argentina (1) and 59 accessions with
no clear geographic record. All sweet corns were planted in one-row
plotsusing arandomized block design at the field experiment station
(113°224E, 23°093’N) of Guangdong Academy of Agricultural Sci-
ences. Detailed information about these accessions, such as traditional
names, pedigree source descriptions and germplasm types, is available
inSupplementary Table 5.

Leafsamples fromeach line were harvested at seedling stage (50 d
after sowing) for DNA extraction. All maize plants were self-pollinated
and fiveimmature seeds were collected at 15 d and 20 d after pollination
from three ears in each block. These seeds were bulked for total RNA
and metabolite extraction. Allsamples for DNA extraction, RNAisola-
tion and metabolite profiling wereimmediately stored at —80 °C after
sampling for further analysis. Intotal, 295 leaf samples at the seedling
stage were obtained and used for WGS and 280 immature kernel tissue
samples were harvested and successfully processed for RNA-seq and
metabolite profiling.

Genome assembly

The genome of RC was assembled using 247.21 Gb of clean data (reads
withalength of <1,000 bp or bases with a quality score <7 were filtered
out) obtained from the Nanopore GridlION sequencing platform. The
assembly pipeline integrated Necat® (v0.01) and Pilon** (v1.22).In brief,
Necat was used for Nanopore read correction, initial contig assembly
and contig correction. The assembly results were then corrected for
indel and SNP errors using Pilon based on next-generation sequenc-
ing data. A total of 891 contigs was obtained, with the shortest contig
exceeding 2,000 bp.

Leaf tissues from RC lines at the seedling stage were fixed with
formaldehyde to maintain the three-dimensional (3D) structure of
the DNA, then digested with restriction endonuclease. Biotin-labeled
bases were introduced to DNA sequences using the DNA terminal repair
mechanism. The DNA was then fragmented and 300-bp to 700-bp frag-
ments were recovered. High-quality Hi-Clibraries were sequenced on
the BGIDNBSEQ platform. Intotal, 877.40 millionreads (263.2 Gb clean
data; 121.3 x genome coverage) were obtained from the Hi-C library. Of
these, 65.79% of the read pairs were uniquely mapped to the assembled
genome and 47.96% were valid interaction pairs used for Hi-C assembly.

The software fastp® (v0.23.2) was used to filter raw reads with the
parameters --average_qual15-1150".Juicer® (v1.6) was used to align the
clean pair-end reads to the assembled genome to obtain the uniquely
mapped read pairs. Software 3D-DNA* (v170123) was used to cluster,
order and orient the genome contigs on to the pseudochromosomes.
Finally, the RC assemblies were divided into 500-kb bins and the interac-
tionsignals generated by the read pairs between each bin were visual-
izedinthe heatmap.

Genome evaluation and annotation

The completeness of the genome was assessed using BUSCO*® (v3) with
the dataset of embryophyta_odbl0. Repetitive sequences, including tan-
demrepeats and transposable elements, were annotated with de novo
predictions (RepeatModeler v4.1.0 and LTR_FINDER v1.06) and homolog
searches (RepeatMasker v4 and RepeatProteinMask v4.0.7) based on
the database of RepBase® * (v21.12). Using Meryl** (v1.4.1), a k-mer data-
base was constructed with a k-mer size of 20. The consensus k-mer QV
score was then computed using Merqury* (v1.3) withits default param-
eters. LTRs were predicted using EDTA* (v2.2) with its default param-
eters. The LAl was computed utilizing the LTR retriever*** (v3.0.1)
pipeline to assess the continuity of assembled repetitive sequences.
Gene annotation utilized an evidence-based prediction pipeline. For
homolog analysis, five model species (Setaria italica, Oryza sativa,

Brachypodiumdistachyon, Sorghum bicolor and Arabidopsisthaliana)
and three maize genomes (B73, Mo17 and SK) were selected'®***%, A set
of 3,000 well-constructed genes were randomly selected for Augustus
asatraining dataset for the de novo prediction. Finally, Maker® (v2.31.8)
was used for gene annotation, integrating RNA-seq datafromten tissues
(germ, radicle, male spikelet, embryo, unpollinatedsilks, immature ear,
leaf, stem, root and endosperm) of the RC inbred line.

Resequencing and variant calling
Genomic DNA from sweet-corn seedling leaf tissues was isolated and
sequencing libraries were prepared following instructions for the
Illumina platform. These libraries underwent pair-end sequencing
on the lllumina Hiseq2500 platform. To investigate the population
affinities of sweet corn, we analyzed them alongside a published data-
set of field corn, which contains 507 inbred lines with diverse genetic
backgrounds®*. These field corninbred lines were collected globally,
encompassing temperate, tropical and/or subtropicalinbred lines and
some landraces. Detailed information on these field corns has been
described ina previous study®. The field corn were re-sequenced using
anlllumina NovaSeq6000 platform*, with sequencing depth varying
between15.4x and 34.6x and an average genome coverage of 22.5x.
For sweet corn, heterozygosity was estimated with GenomeScope
2.0 (ref.54), which analyzes the k-mer count distribution fromJellyfish*
(v1.1.11). Trimmomatic®® (v0.33) was employed to remove low-quality
bases and reads. Retained read pairs were then mapped against our
chromosome-scale RC genome using the Burrows-Wheeler Aligner®’
(v0.7.17) for each sample, respectively. SAMtools®® (v1.9) was used
to filter reads with a mapping quality (MAPQ) <30. SNP calling was
performed using GATK*’ (v4.1.3), following the best-practice pipeline.
Read depth and coverage were determined using BEDtools®° (v2.25.0).

Population stratification

An unsupervised ancestral component analysis for sweet corn and
field corn was performed using ADMIXTURE® (v1.3.0). A subset of
SNP dataset (167,000 SNPs; filter criterion: minor allele frequency
(MAF) >0.05, missing ratio <10% and pairwise LD r* < 0.2 within 100 kb)
were selected for admixture analyses. To determine the number of
ancestral components (K) of theinbred lines, atenfold crossvalidation
approachwasimplemented foreachK,K=1toK=10.We choseK =3 as
the number of ancestries for these lines, because the crossvalidation
error sharply converged at this value.

Statistical analyses of nucleotide diversity (1) and population
divergence (F,) were conducted using VCFtools®® (v0.1.16) with a
1,000-bpsliding window and 100-bp steps. PCA was carried out using
PLINK® with the “-pca’ option. SNPs were filtered with an MAF of 0.05
and amissing ratio of 10. High LD SNPs were also filtered using pairwise
LD values calculated and processed using an R script. Haplotype net-
works were constructed using the R package pegas®*.

LD decay

PopLDdecay® (v3.40) software was used to calculate LD values based on
the values and the corresponding distance between given SNPs within
600 kb. The parameters were set as following: ‘-MaxDist 600 -MAF
0.05". The distance of LD decay was obtained when r* dropped to 0.2.

Genome-wide selective sweep scan

Two approaches were used to identify genomic regions with positive
selection signals. We compared the SNP dataset of sweet corn (test pop-
ulation) with that of field corn (reference population). XP-CLR (v1.0)
values for each window were calculated with the published script®.
Parameters were: sliding window size 0.5 cM, grid size 20 kb, maximum
number of SNPs within awindow 200 and a correlation level cutoff of
0.70.Regions with the top 5% highest XP-CLR values were identified as
candidate selective sweeps, where adjacent intervals without gaps are
merged to form continuous regions.
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XP-EHH was measured using the software selscan® (v1.3.0). The
genome was divided into consecutive, nonoverlapping 20-kb windows
and XP-EHH values were standardized using the ‘norm --xpehh’ func-
tionin selscan. Regions assigned as candidates for significant selection
featured a P< 0.05, with adjacent and nongapped intervals merged
directly to form continuous regions.

GC-MS and LC-MS analysis

Kernels of sweet-corn accessions at 20 DAP were harvested in two
biological replicates and stored at —80°C before metabolic analyses.
The kernels, pre-cooled in liquid nitrogen, were ground using a Mixer
mill (Retsch, cat. no. MM400) for 30 s at 30 Hz. Then 50 mg of each
sample powder was extracted following the procedures described in
previous studies®®®’,

For primary metabolite profiling, dried treatments were derivat-
ized with N-methyl-N-(trimethylsilyl) trifluoroacetamide’ and analyzed
using GC-MS (Agilent, cat.no.7890A-5975C); 1 pl of the liquid mixture
from each sample was injected into the GC-MS at 270 °Cin split mode
(50:1) with helium carrier gas (>99.999% purity) flow set tol ml minand
separated by aDB-35MS Ul (30 m x 0.25 mm, 0.25-pm) capillary column.

For secondary metabolite profiling, another dried treatment was
resuspended in150 pl of ultra-performance LC-grade methanol:water
(1:1, v:v). Samples were then subjected to MS analysis using an Orbitrap
fusion (Thermo Fisher Scientific) equipped with areversed-phase LC
system (Dionex, Thermo Fisher Scientific) in heated electrospray ioni-
zationmode. First, 10 pl of each sample was eluted using a TSS T3 col-
umn (100 mm x 2.1 mm containing 1.8-pum diameter particles, Waters)
witha 0.4 ml min~flow rate. Mobile phase A was water with 0.1% formic
acid and mobile phase B was acetonitrile with 0.1% formic acid.

Metabolomic data were analyzed according to the protocol
described in our previous study”’. The Agilent MassHunter Quantita-
tive Analysis software (vB.07.01) was used for GC-MS data analyses.
An NIST library and in-house database established using authentic
standards were used together for metabolite identification.

LC-MS-based metabolomics were first analyzed using Xcalibur
software (v4.2; Thermo Fisher Scientific). Compound Discovery (v3.1;
ThermoFisher Scientific) and Trace Finder (v3.3; Thermo Fisher Scien-
tific) were used for qualitative and quantitative analysis of the second-
ary metabolome. Secondary metaboliteidentification was supported
byin-house databases and online databases, includingmzCloud, Chem-
spider, Human Metabolome Database (HMDB), KEGG and BioCyc. Both
GC-MS and LC-MS metabolites were reported following the latest
reporting standards’’.

Metabolite GWAS

We used amixed linear model to evaluate the association between SNPs
and metabolic traits with Tassel”> (v3.0), integrating both population
structure and kinship matrix. The top five principal components (PCs)
mentioned above were used as population structure and the kinship
was estimated using the Tassel program.

Heterozygous genotypes in the SNP dataset were replaced with
missing ones. The SNP dataset was filtered with a 10% cutoff for miss-
ing dataand markers with MAF > 0.05 remained for GWASs. A uniform
significance threshold (P=0.05/n, where n=1,267,142, the effective
number of independent SNPs used in the GWASs) was used for all meta-
bolic traits’>’*. The P-value threshold for significance in the present
sweet-corn population was approximately P=3.95x1075,

The SNPwith thelowest Pvalueineachlocus was treated as thelead
SNP and genes within a 50-kb region (downstream and upstream) of
thelead SNP were selected as candidate genes. The R software package
‘coloc’ was used to performthe colocalization analyses for two GWAS
results using the corresponding summary data”™. The candidate genes
for further validation were selected based on multiple rules (for exam-
ple, statistical analyses, gene expression, correlation to metabolites and
flavor traits and prior biological knowledge) (Extended Data Fig. 5b).

RNA-seq and eQTL analysis

Allsamples for RNA-seq were collected fromimmature kernel tissues at
15 DAP. Total RNA was extracted using a Quick RNA Isolation Kitaccord-
ingtothe manufacturer’sinstructions. The quality of the extracted RNA
was evaluated using BioRad Experion. [llumina stranded messenger
RNAlibraries with aninsert size of 300-500 bp were constructed using
aTruseqstranded mRNA sample preparation kit (Illumina). Paired-end
150-bp sequencing was conducted on the lllumina Hiseq2500 platform,
yielding an average of 31.27 million raw reads per sample. After remov-
ing sequencing adapters and low-quality reads with Trimmomatic, the
trimmed reads were thenmapped to the RC genome using Hisat2 (ref. 76)
(v2.1.0). Anaverage of 24.76 million reads per sample with high mapping
quality (MAPQ >30) were used for expression abundance evaluation.
BAMfiles were sorted and organized using SAMtools. StringTie” (v2.20)
was used to assemble transcripts and estimate their expression abun-
dances. Ballgown’ package (v3.6.0) in R was used to extract fragments
perkilobase per million read (FPKM) values for allgenes inall samples.

To detect eQTLs through a mixed linear model, the expression
value of each gene was normalized to a normal distribution using the
normal quantile transformation function (qqnorm) in R to meet the
assumptions of the GWAS mixed linear model statistical method. A total
0f 20,073 genes (with median expression of FPKM > 1) was obtained
to conduct downstream analyses. Association analyses followed the
same procedures and significance threshold criterion as described
for mGWASs.

For the field-corn population, all raw sequencing data were
obtained from our previous studies'>*>. We reanalyzed the eQTLs using
the same pipelines and parameters. In brief, 8,407,536 high-quality
SNP loci were identified within the field-corn panel (n = 342), with
1,412,504 independent SNPs obtained. A total of 18,972 genes (with
median expression of FPKM >1) were regarded as expressed genes and
used for subsequent eGWASs. The P-value threshold for significance
in the present field corn population was approximately P=3.54 x 108
(P=0.05/n).

The eQTLs were classified into cis-eQTLs and trans-QTLs according
tothedistance between thelead SNP and the corresponding gene. For
each eQTL, if the lead SNP was located within the gene or within 2 kb
upstream of the gene, it was regarded as a cis-eQTL; otherwise, it was
considered tobe atrans-eQTL.

Flavor test

To observe the difference in sweet-corn quality among 295 accessions,
we conducted tasting tests with both sweet-cornbreeders and ordinary
consumers. Briefly, fresh sweet-corn ears were harvested at the optimal
eating period (20 DAP). To reduce the influence of human-induced
factors, two independent experiments were organized.

In 2017 and 2019, 5 and 7 experts from a high-quality sweet-corn
breeding program scored 232 and 228 cooked corn samples, respec-
tively. Participants rated four properties (sweetness, brittleness, peri-
carp thickness and volatiles) on a scale from 1to 10 (10 being most
favorable and 1least favorable), with a medium performance line as
a control. Given the inverse correlation between original pericarp
thickness scores and actual physical thickness—with 10 representing
the thinnest pericarp (most favorable) and 1the thickest (least favora-
ble)—we applied a data transformation: subtracting each score from
11. This transformation ensured that, in subsequent analyses, higher
numerical values directly corresponded to thicker pericarps, whichis
more consistent with common sense.

In addition, in 2019, 89 samples from different individuals were
scored twice to evaluate the reliability of the scores. To evaluate the
representative nature of the expert data, 95 untrained testers (33 men,
62women) scored 18 typical lines from the sweet-corn populationusing
the same procedure and criteria as the expert tests.

Thetasting datafrom 2017 and 2019 were disposed asindependent
environments and merged using the BLUP method. These merged data
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were thenused for associationand correlation analyses with metabolite
traits and gene expression values.

Knockout of candidate genes using the CRISPR-Cas9
technique

For each candidate gene (Sh2, Sul, ZmAPS1, ZmSK1 and ZmCRRS),
two small guide RNAs (Supplementary Table 23) were designed
using CRISPR-P”’ (v2.0). Vectors carrying the small guide RNAs were
imported into the Agrobacterium strain and then used to transform
the immature embryos of the maize inbred line KN5585 through
Agrobacterium-mediated transformation’. All edited seedlings,
together with control plants, were planted inrandomized block design
plots at Sanya, Hainan province (109°51’E, 18°25’N) in 2020. Mutations
wereidentified using Sanger sequencing. All kernel tissue samples were
harvested at20 DAP. The procedure forimmature kernel transcriptome
and metabolome profiling was the same as that used for the sweet-corn
population. All the relevant materials generated here are available to
be shared onrequest from the corresponding authors.

Statistics

Broad-sense heritability (H?) was estimated using the variance compo-
nent method as theratio of genotypic to thetotal phenotypic variance.
H? = a%/(d% + 03/n,), where o7 and o} are the variance components for
genotypes and years, respectively, and n, represents the number of
years. Broad-sense heritability was estimated using the Ime4 (ref. 79)
package in R. SNP heritability (variation in flavor ratings explained by
all SNPs across the genome) was estimated using GCTA>#° (v1.94.1).
Genotype data were converted to PLINK format using VCFtools® to
meet GCTArequirements. The statistical significance of the deviation
of observed data distribution (for example, eQTL hotspot identifica-
tion) from uniformdistribution were assessed using permutation tests
implementedin R scripts. GO and KEGG analyses were performed using
the clusterProfiler® packageinR.

Athree-step regression approach was adopted to evaluate the fac-
tors (including mutants, gene expressions and metabolites) involved in
sweet-corn flavor quality. Briefly, two mutants with significant associa-
tionsto flavor scores (that is, sh2 and sul) were included in the regres-
sion analyses. For the 494 metabolites and 20,073 gene expressions,
they were groupedinto different modules using the ‘kmeans’ method*
and 28 and 14 modules were determined using the ‘wss’method intheR
package of factoextra (http://www.sthda.com/english/rpkgs/factoex-
tra). Mean values of each normalized potential factor were additionally
incorporatedinto the regression models. We next performed the least
absolute shrinkage and selection operator® regression analysis to
evaluate the priorities of these factors. The proportion of variance was
adjusted with collinear effects excluded in the multiple linear regres-
sionmodel used for the perception of sweet-corn flavor. First, alinear
regression mode was used for collinearity screening with a variance
inflation factor <4. Second, the least absolute shrinkage and selection
operator was adopted for the evaluation of the relative weight and to
assign priority to each factor simultaneously. Last, adjusted R* values
were estimated from linear regression models with factorsintroduced
based onthe priority obtained above. All these steps were implemented
inR. The specific statistical tests used were indicated in the correspond-
ing figure legends or corresponding sections in Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets supporting the findings of this study have been depos-
ited into the CNGB Sequence Archive of the China National Gene-
Bank DataBase (https://db.cngb.org/) under the following accession
nos.: de novo assembled genomes and raw data at CNP0004684,

CNP0003283 and CNP0003295; raw WGS data for the 295 sweet-corn
accessions at CNP0003213; RNA-seq data for the 280 sweet-cornacces-
sions at CNP0003294; and RNA-seq for knockout and wild-type lines
at CNP0003291 and CNP0O004707. Source data are provided with
this paper.

Code availability

No customized code was generated for this study. All analyses were
performed using publicly available software with parameters detailed
inMethods.
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Extended DataFig.1| Genetic differences of sweet and field corn. a, Length of compared to IL14H.f, Distribution of specific sequences in the RC genome
specific sequences in the RC genome compared to B73. b, Distribution of specific compared toIL14H. g, Length of specific sequences in the RC genome compared
sequencesin the RC genome compared to B73. ¢, Length of specific sequences to p39. h, Distribution of specific sequences in the RC genome compared to p39.
inthe RC genome compared to 1a453. d, Distribution of specific sequences inthe i, Populationstructure of sweet and field corn populations, inferred using the

RC genome compared to 1a453. e, Length of specific sequences in the RC genome maximum-likelihood method with three and four ancestral components (K =3, 4).
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Extended Data Fig. 10 | Haplotype analysis of ZmCRRS. a, Identification of
haplotype-specific (minimum allele frequency <15% in one haplotype and
corresponding allele frequency > 85% in other two haplotype groups) SNPs
inZmCRRS, shown as vertical lines in gray (introns), red (coding regions), and
black (untranslated regions). were presented with gray, red and black vertical
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design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

& Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size for corn population genetic analysis is 507 (field corn) and 295 (sweet corn); For eGWAS, the sample size is 368 (field corn)
and 280 (sweet corn). 295 sweet corn lines were used for kernel flavor quality estimation. For eGWAS, the sample sizes were 368 for field
corn and 280 for sweet corn that had been sequenced by RNA-seq.

These sample sizes were the largest possible we could collect to ensure the GWAS had high power, and no other particular statistical methods
were used to predetermine the sample sizes.
For CRISPR-based validation of each gene, at least 10 individuals were used to ensure reliable and consistent phenotypic effects.

Data exclusions  Raw reads and genotype with low quality were excluded as described in the methods.

Replication The phenotype of the flavor quality estimation used in this study were validated by at least two years field experiments. The phenotype of the
knock out mutants used in this study were validated by at least nine biological replication.

Randomization  The sweet corns were planted in a random order. The sample of sweet corn for whole genome re-sequencing and RNA-seq were randomly
collected in one line comprising 12 individuals. Five ears of sweet corn were randomly collected for kernel quality estimation. Population
structure was integrated as covariates in all GWAS analyses.

For CRISPR validations, all the knock-outs and their corresponding controls were planted, cultivated and analyzed in the same environment
and the same batch of sequencing.
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Blinding The investigators are blinded to the group allocation during phenotypic data collection.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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